A Mixed Finite Element Method for Stationary Magneto-Heat Coupling System with Variable Coefficients
Abstract
:1. Introduction
2. Notations for the Variable Coefficients Model
Uniqueness of Continuous Problems
- ,
- ,
- ,
3. Finite Element Analysis for Magneto-Heat Coupling System
4. Convergence Analysis of the Magneto-Heat Coupling Problem
5. Numerical Experiment
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anderson, D.A.; Tannehill, J.C.; Pletcher, R.H. Computational Fluid Mechanics and Heat Transfer; Series in Computational Methods in Mechanics and Thermal Sciences; Hemisphere Publishing Corp.: Washington, DC, USA; McGraw-Hill Book Co.: New York, NY, USA, 1984. [Google Scholar]
- Davidson, P.A. An Introduction to Magnetohydrodynamics; Cambridge Texts in Applied Mathematics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Moreau, R. Magnetohydrodynamics; Vol. 3 of Fluid Mechanics and Its Applications; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Demkowicz, L.; Vardapetyan, L. Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 1998, 152, 103–124. [Google Scholar] [CrossRef]
- Vardapetyan, L.; Demkowicz, L. hp-adaptive finite elements in electromagnetics. Comput. Methods Appl. Mech. Eng. 1999, 169, 331–344. [Google Scholar] [CrossRef]
- Armero, F.; Simo, J.C. Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 1996, 131, 41–90. [Google Scholar] [CrossRef]
- Gerbeau, J.-F.; Bris, C.L. Comparison between two numerical methods for a magnetostatic problem. Calcolo 2000, 37, 1–20. [Google Scholar] [CrossRef]
- Guermond, J.L.; Minev, P.D. Mixed finite element approximation of an MHD problem involving conducting and insulating regions: The 3D case. Numer. Methods Partial Differ. Equ. 2003, 19, 709–731. [Google Scholar] [CrossRef] [Green Version]
- He, Y. Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 2015, 35, 767–801. [Google Scholar] [CrossRef]
- Layton, W.; Tran, H.; Trenchea, C. Stability of partitioned methods for magnetohydrodynamics flows at small magnetic Reynolds number. In Recent Advances in Scientific Computing and Applications; Vol. 586 of Contemp. Math.; American Mathematical Society: Providence, RI, USA, 2013; pp. 231–238. [Google Scholar]
- Costabel, M.; Dauge, M. Weighted regularization of Maxwell equations in polyhedral domains. A rehabilitation of nodal finite elements. Numer. Math. 2002, 93, 239–277. [Google Scholar] [CrossRef] [Green Version]
- Hiptmair, R. Finite elements in computational electromagnetism. Acta Numer. 2002, 11, 237–339. [Google Scholar] [CrossRef] [Green Version]
- Schötzau, D. Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 2004, 96, 771–800. [Google Scholar] [CrossRef]
- Baňas, L.; Prohl, A. Convergent finite element discretization of the multi-fluid nonstationary incompressible magnetohydrodynamics equations. Math. Comp. 2010, 79, 1957–1999. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.; Long, X.; Mao, S. Convergence analysis of crank-nicolson extrapolated fully discrete scheme for thermally coupled incompressible magnetohydrodynamic system. Appl. Numer. Math. 2020, 157, 522–543. [Google Scholar] [CrossRef]
- Greif, C.; Li, D.; Schötzau, D.; Wei, X. A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 2010, 199, 2840–2855. [Google Scholar] [CrossRef]
- Prohl, A. Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. M2AN Math. Model. Numer. Anal. 2008, 42, 1065–1087. [Google Scholar] [CrossRef] [Green Version]
- Hiptmair, R.; Li, L.; Mao, S.; Zheng, W. A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 2018, 28, 659–695. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Ma, Y.; Xu, J. Stable finite element methods preserving Δ · B = 0 exactly for MHD models. Numer. Math. 2017, 135, 371–396. [Google Scholar] [CrossRef]
- Meir, A.J. Thermally coupled magnetohydrodynamics flow. Appl. Math. Comput. 1994, 65, 79–94. [Google Scholar] [CrossRef]
- Meir, A.J. Thermally coupled, stationary, incompressible MHD flow; Existence, uniqueness, and finite element approximation. Numer. Methods Partial Differ. Equ. 1995, 11, 311–337. [Google Scholar] [CrossRef]
- Cheng, Z.; Takahashi, N.; Forghani, B. Electromagnetic and Thermal Field Modeling and Application in Electrical Engineering; Science Press: Beijing, China, 2009. [Google Scholar]
- Ding, Q.; Long, X.; Mao, S. Convergence analysis of a fully discrete finite element method for thermally coupled incompressible mhd problems with temperature-dependent coefficients. ESAIM Math. Model. Numer. Anal. 2022, 56, 969–1005. [Google Scholar] [CrossRef]
- Ellahi, R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions. Appl. Math. Model. 2013, 37, 1451–1467. [Google Scholar] [CrossRef]
- Gala, S. A note on the liouville type theorem for the smooth solutions of the stationary hall-mhd system. AIMS Math. 2016, 1, 282–287. [Google Scholar] [CrossRef]
- Gala, S.; Ragusa, M.A.; Sawano, Y.; Tanaka, H. Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in orlicz–Morrey spaces. Appl. Anal. 2014, 93, 356–368. [Google Scholar] [CrossRef]
- Nadeem, S.; Akbar, N.S. Effects of temperature dependent viscosity on peristaltic flow of a Jeffrey-six constant fluid in a non-uniform vertical tube. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3950–3964. [Google Scholar] [CrossRef]
- Ragusa, M.A. On weak solutions of ultraparabolic equations. Nonlinear Anal. Theory Methods Appl. 2001, 47, 503–511. [Google Scholar] [CrossRef]
- Tabata, M.; Tagami, D. Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients. Numer. Math. 2005, 100, 351–372. [Google Scholar] [CrossRef]
- Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V. Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 1998, 21, 823–864. [Google Scholar] [CrossRef]
- Girault, V.; Raviart, P.-A. Finite Element Methods for Navier-Stokes Equations; Vol. 5 of Springer Series in Computational Mathematics; Springer: Berlin, Germany, 1986. [Google Scholar]
- Fernandes, P.; Gilardi, G. Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 1997, 7, 957–991. [Google Scholar] [CrossRef]
- Monk, P. Finite Element Methods for Maxwell’s Equations; Numerical Mathematics and Scientific Computation; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Lorca, S.A.; Boldrini, J.L. Stationary solutions for generalized boussinesq models. J. Differ. Equ. 1996, 124, 389–406. [Google Scholar] [CrossRef] [Green Version]
- Boffi, D.; Brezzi, F.; Fortin, M. Mixed Finite Element Methods and Applications; Vol. 44 of Springer Series in Computational Mathematics; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Brezzi, F.; Fortin, M. Mixed and Hybrid Finite Element Methods; Vol. 15 of Springer Series in Computational Mathematics; Springer: New York, NY, USA, 1991. [Google Scholar]
- Nédélec, J.-C. Mixed finite elements in R3. Numer. Math. 1980, 35, 315–341. [Google Scholar] [CrossRef]
- Ciarlet, P.G. The Finite Element Method for Elliptic Problems; Studies in Mathematics and Its Applications; North-Holland Publishing Co.: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1978; Volume 4. [Google Scholar]
- Oyarzúa, R.; Qin, T.; Schötzau, D. An exactly divergence-free finite element method for a generalized boussinesq problem. IMA J. Numer. Anal. 2014, 34, 1104–1135. [Google Scholar] [CrossRef]
- Heywood, J.G.; Rannacher, R. Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 1982, 19, 275–311. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, T.; Liu, H. A set of symmetric quadrature rules on triangles and tetrahedra. J. Comput. Math. 2009, 27, 89–96. [Google Scholar]
- Zhang, L.-B. A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection. Numer. Math. Theory Methods Appl. 2009, 2, 65–89. [Google Scholar]
Grid | h | DOFs for | DOFs for | DOFs for | Ndofs |
---|---|---|---|---|---|
0.866 | 402 | 321 | 125 | 848 | |
0.433 | 2312 | 1937 | 729 | 4978 | |
0.217 | 15,468 | 13,281 | 4913 | 33,662 | |
0.108 | 112,724 | 97,985 | 35,937 | 246,646 |
h | ||||
---|---|---|---|---|
0.866 | 1.136 | - - | 1.187 | - - |
0.433 | 2.745 | 2.0488 | 2.496 | 2.2501 |
0.217 | 6.766 | 2.0271 | 5.774 | 2.1189 |
0.108 | 1.686 | 1.9919 | 1.377 | 2.0545 |
h | ||||
0.866 | 1.405 | - - | 7.545 | - - |
0.433 | 6.873 | 1.0315 | 1.837 | 2.0384 |
0.217 | 3.382 | 1.0263 | 4.456 | 2.0500 |
0.108 | 1.677 | 1.0057 | 1.089 | 2.0194 |
h | ||||||
---|---|---|---|---|---|---|
0.866 | 9.095 | - - | 5.995 | - - | 1.851 | - - |
0.433 | 1.136 | 3.0010 | 7.494 | 2.9999 | 4.977 | 1.8950 |
0.217 | 1.442 | 2.9883 | 9.376 | 3.0088 | 1.268 | 1.9794 |
0.108 | 1.950 | 2.8671 | 1.142 | 3.0169 | 3.178 | 1.9830 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Q.; Long, X.; Mao, S. A Mixed Finite Element Method for Stationary Magneto-Heat Coupling System with Variable Coefficients. Entropy 2022, 24, 912. https://doi.org/10.3390/e24070912
Ding Q, Long X, Mao S. A Mixed Finite Element Method for Stationary Magneto-Heat Coupling System with Variable Coefficients. Entropy. 2022; 24(7):912. https://doi.org/10.3390/e24070912
Chicago/Turabian StyleDing, Qianqian, Xiaonian Long, and Shipeng Mao. 2022. "A Mixed Finite Element Method for Stationary Magneto-Heat Coupling System with Variable Coefficients" Entropy 24, no. 7: 912. https://doi.org/10.3390/e24070912
APA StyleDing, Q., Long, X., & Mao, S. (2022). A Mixed Finite Element Method for Stationary Magneto-Heat Coupling System with Variable Coefficients. Entropy, 24(7), 912. https://doi.org/10.3390/e24070912