On Some Extension of Intuitionistic Fuzzy Synthetic Measures for Two Reference Points and Entropy Weights
Abstract
:1. Introduction
2. The Hellwig Method Based on Two Reference Points
3. Preliminaries on Intuitionistic Fuzzy Sets
3.1. The Notion of IFS
3.2. Distances and Similarity Measures between IFS
3.3. The Intuitionistic Fuzzy Entropy-Based Weights Method
4. The Double Intuitionistic Fuzzy Synthetic Measure
5. Illustrative Example
6. Conclusions
- We extended the Hellwig method into an intuitionistic fuzzy environment, showing the possible applications not only in the analysis of complex phenomena, but in a more general context of multi-criteria decision-making in uncertainty;
- The proposed aggregation formula DIFSM takes into consideration the different importance of criteria, and for dealing with the unknown information about criteria weights, the entropy-based weights of criteria methods were established;
- We adopt the Hellwig proposition of normalization of classical synthetic measure based on the distance between ideal and anti-ideal points into an intuitionistic fuzzy environment, which makes the DIFSM algorithm simpler and more intuitive than the approach based on average and standard deviations determined by the values of distances between alternative and ideal points.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DIFSM | Double Intuitionistic Fuzzy Synthetic Measure |
IFS | Intuitionistic fuzzy sets |
IFV | Intuitionistic fuzzy value |
IFI | Intuitionistic fuzzy ideal point |
IFAI | Intuitionistic fuzzy anti-ideal point |
DM | Decision maker |
DR | Direct Rating |
PA | Point Allocation |
AHP | Analytic Hierarchy Process |
SMTOPSIS | Weighted TOPSIS-based method with a similarity measure |
IFTOPSIS | Weighted intuitionistic fuzzy TOPSIS |
TOPSIS | The Technique for Order of Preference by Similarity to Ideal Solution |
References
- Durbach, I.N.; Stewart, T.J. Modeling Uncertainty in Multi-Criteria Decision Analysis. Eur. J. Oper. Res. 2012, 223, 1–14. [Google Scholar] [CrossRef]
- Weber, M. Decision Making with Incomplete Information. Eur. J. Oper. Res. 1987, 28, 44–57. [Google Scholar] [CrossRef]
- Kahraman, C. Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Developments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 16. [Google Scholar]
- Liu, H.-W.; Wang, G.-J. Multi-Criteria Decision-Making Methods Based on Intuitionistic Fuzzy Sets. Eur. J. Oper. Res. 2007, 179, 220–233. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Wang, H.-P.; Lu, Y.-Y. A Multicriteria Group Decision-Making Approach Based on Interval-Valued Intuitionistic Fuzzy Sets: A Comparative Perspective. Expert Syst. Appl. 2011, 38, 7647–7658. [Google Scholar] [CrossRef]
- Kokoç, M.; Ersöz, S. A Literature Review of Interval-Valued Intuitionistic Fuzzy Multi-Criteria Decision-Making Methodologies. Oper. Res. Decis. 2021, 31, 89–116. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic Fuzzy Sets. In Intuitionistic Fuzzy Sets; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–137. [Google Scholar]
- Boran, F.E.; Genç, S.; Kurt, M.; Akay, D. A Multi-Criteria Intuitionistic Fuzzy Group Decision Making for Supplier Selection with TOPSIS Method. Expert Syst. Appl. 2009, 36, 11363–11368. [Google Scholar] [CrossRef]
- Rouyendegh, B.D. Developing an Integrated ANP and Intuitionistic Fuzzy TOPSIS Model for Supplier Selection. J. Test. Eval. 2015, 43, 664–672. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Güleryüz, S. An Application of Intuitionistic Fuzzy Topsis on Mobile Phone Selection. In Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, 2–5 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–8. [Google Scholar]
- Boran, F.E.; Genç, S.; Akay, D. Personnel Selection Based on Intuitionistic Fuzzy Sets. Hum. Factors Ergon. Manuf. Serv. Ind. 2011, 21, 493–503. [Google Scholar] [CrossRef]
- Boran, F.E.; Boran, K.; Menlik, T. The Evaluation of Renewable Energy Technologies for Electricity Generation in Turkey Using Intuitionistic Fuzzy TOPSIS. Energy Sources Part B Econ. Plan. Policy 2012, 7, 81–90. [Google Scholar] [CrossRef]
- Jefmański, B. Intuitionistic Fuzzy Synthetic Measure for Ordinal Data. In Proceedings of the Conference of the Section on Classification and Data Analysis of the Polish Statistical Association, Szczecin, Poland, 18–20 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 53–72. [Google Scholar]
- Jefmański, B.; Roszkowska, E.; Kusterka-Jefmańska, M. Intuitionistic Fuzzy Synthetic Measure on the Basis of Survey Responses and Aggregated Ordinal Data. Entropy 2021, 23, 1636. [Google Scholar] [CrossRef]
- Roszkowska, E. The Intuitionistic Fuzzy Framework for Evaluation and Rank Ordering the Negotiation Offers. In Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation, INFUS 2021; Lecture Notes in Networks and Systems; Kahraman, C., Cebi, S., Onar, S., Oztaysi, B., Tolga, A.C., Sari, I.U., Eds.; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2021; Volume 308, pp. 58–65. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Intuitionistic Fuzzy Sets in Some Medical Applications. In Proceedings of the International Conference on Computational Intelligence, Dortmund, Germany, 1 October 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 148–151. [Google Scholar]
- Hellwig, Z. Wielowymiarowa Analiza Porównawcza i Jej Zastosowanie w Badaniach Wielocechowych Obiektów Gospodarczych [Multivariate Comparative Analysis and Its Application in Multi-Criteria Research of Economic Objects]. In Metody i Modele Ekonomiczno-Matematyczne w Doskonaleniu Zarządzania Gospodarką Socjalistyczną; PWE: Warszawa, Poland, 1981; pp. 46–68. [Google Scholar]
- Hellwig, Z. Zastosowanie Metody Taksonomicznej Do Typologicznego Podziału Krajów Ze Względu Na Poziom Ich Rozwoju Oraz Zasoby i Strukturę Wykwalifikowanych Kadr [Application of the Taxonomic Method to the Typological Division of Countries According to the Level of Their Development and the Resources and Structure of Qualified Personnel]. Przegląd Stat. 1968, 4, 307–326. [Google Scholar]
- Hellwig, Z. Procedure of Evaluating High-Level Manpower Data and Typology of Countries by Means of the Taxonomic Method. In Towards a System of Human Resources Indicators for Less Developed Countries; Paper Prepared for UNESCO Research Project; Ossolineum The Polish Academy of Sciences: Wrocław, Poland, 1972; pp. 115–134. [Google Scholar]
- Hellwig, Z. On the Optimal Choice of Predictors. In Toward a System of Quantitative Indicators of Components of Human Resources Development; Study VI; Gostkowski, Z., Ed.; UNESCO: Paris, France, 1968. [Google Scholar]
- Di Domizio, M. The Competitive Balance in the Italian Football League: A Taxonomic Approach; Department of Communication, University of Teramo: Teramo, Italy, 2008. [Google Scholar]
- Pawlas, I. Economic Picture of the Enlarged European Union in the Light of Taxonomic Research. Proc. MAC EMM 2016, 5–6. [Google Scholar]
- Reiff, M.; Surmanová, K.; Balcerzak, A.P.; Pietrzak, M.B. Multiple Criteria Analysis of European Union Agriculture. J. Int. Stud. 2016, 9, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Roszkowska, E.; Filipowicz-Chomko, M. Measuring Sustainable Development Using an Extended Hellwig Method: A Case Study of Education. Soc. Indic. Res. 2021, 153, 299–322. [Google Scholar] [CrossRef]
- Iwacewicz-Orłowska, A.; Sokołowska, D. Ranking of EU Countries in Terms of the Value of Environmental Governance Indicators in 2010 and 2015. Ekon. Sr. 2018, 66, 13. [Google Scholar]
- Krukowski, A.; Nowak, A.; Różańska-Boczula, M. Evaluation of Agriculture Development in the Member States of the European Union in the Years 2007–2015. In Proceedings of the 31st International Business Information Management Association Conference, Milan, Italy, 25–26 April 2018. [Google Scholar]
- Łuczak, A.; Wysocki, F. Rozmyta Wielokryterialna Metoda Hellwiga Porządkowania Liniowego Obiektów [Fuzzy Multi-Criteria Hellwig’s Method of Linear Ordering of Objects]. Pr. Nauk. Akad. Ekon. We Wrocławiu. Taksonomia 2007, 14, 330–340. [Google Scholar]
- Wysocki, F. Metody Taksonomiczne w Rozpoznawaniu Typów Ekonomicznych Rolnictwa i Obszarów Wiejskich [Taxonomic Methods in Recognizing Economic Types of Agriculture and Rural Areas]; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznan, Poland, 2010; Volume 399. [Google Scholar]
- Roszkowska, E.; Jefmański, B. Interval-Valued Intuitionistic Fuzzy Synthetic Measure (I-VIFSM) Based on Hellwig’s Approach in the Analysis of Survey Data. Mathematics 2021, 9, 201. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Methods for Multiple Attribute Decision Making; Hwang, C.-L., Yoon, K., Eds.; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981; ISBN 978-3-642-48318-9. [Google Scholar]
- Roszkowska, E.; Wachowicz, T. Metoda TOPSIS i jej rozszerzenia—Studium metodologiczne [TOPSIS method and its extensions—A methodological study]. In Analiza Wielokryterialna: Wybrane Zagadnienia; Prace Naukowe; Uniwersytet Ekonomiczny w Katowicach: Katowice, Poland, 2013; pp. 11–40. [Google Scholar]
- Dehnel, G.; Walesiak, M. A Comparative Analysis of Economic Efficiency of Medium-Sized Manufacturing Enterprises in Districts of Wielkopolska Province Using the Hybrid Approach with Metric and Interval-Valued Data. Stat. Transit. New Ser. 2019, 20, 49–68. [Google Scholar] [CrossRef] [Green Version]
- Walesiak, M.; Dehnel, G. Evaluation of Economic Efficiency of Small Manufacturing Enterprises in Districts of Wielkopolska Province Using Interval-Valued Symbolic Data and the Hybrid Approach. In Proceedings of the 12th Professor Aleksander Zeliaś International Conference on Modelling and Forecasting of Socio-Economic Phenomena, Cracow, Poland, 8–11 May 2018; Foundation of the Cracow University of Economics: Cracow, Poland, 2018; pp. 563–572. [Google Scholar]
- Dehnel, G.; Gołata, E.; Walesiak, M. Assessment of Changes in Population Ageing in Regions of the V4 Countries with Application of Multidimensional Scaling. Argum. Oeconomica 2020, 2019, 77–100. [Google Scholar] [CrossRef]
- Walesiak, M.; Dehnel, G. The Measurement of Social Cohesion at Province Level in Poland Using Metric and Interval-Valued Data. Sustainability 2020, 12, 7664. [Google Scholar] [CrossRef]
- Zadeh, L.A. Information and Control. Fuzzy Sets 1965, 8, 338–353. [Google Scholar]
- Atanassov, K.T. Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Shen, F.; Ma, X.; Li, Z.; Xu, Z.; Cai, D. An Extended Intuitionistic Fuzzy TOPSIS Method Based on a New Distance Measure with an Application to Credit Risk Evaluation. Inf. Sci. 2018, 428, 105–119. [Google Scholar] [CrossRef]
- Xu, Z. Intuitionistic Fuzzy Aggregation Operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187. [Google Scholar]
- Dymova, L.; Sevastjanov, P. Operations on Intuitionistic Fuzzy Values in Multiple Criteria Decision Making. Sci. Res. Inst. Math. Comput. Sci. 2011, 10, 41–48. [Google Scholar]
- Szmidt, E. Distances and Similarities in Intuitionistic Fuzzy Sets. In Studies in Fuzziness and Soft Computing; Springer International Publishing: Cham, Switzerland, 2014; Volume 307, ISBN 978-3-319-01639-9. [Google Scholar]
- Luo, M.; Zhao, R. A Distance Measure between Intuitionistic Fuzzy Sets and Its Application in Medical Diagnosis. Artif. Intell. Med. 2018, 89, 34–39. [Google Scholar] [CrossRef]
- Papakostas, G.A.; Hatzimichailidis, A.G.; Kaburlasos, V.G. Distance and Similarity Measures between Intuitionistic Fuzzy Sets: A Comparative Analysis from a Pattern Recognition Point of View. Pattern Recognit. Lett. 2013, 34, 1609–1622. [Google Scholar] [CrossRef]
- Wang, W.; Xin, X. Distance Measure between Intuitionistic Fuzzy Sets. Pattern Recognit. Lett. 2005, 26, 2063–2069. [Google Scholar] [CrossRef]
- Wu, X.; Song, Y.; Wang, Y. Distance-Based Knowledge Measure for Intuitionistic Fuzzy Sets with Its Application in Decision Making. Entropy 2021, 23, 1119. [Google Scholar] [CrossRef]
- Xu, Z. Some Similarity Measures of Intuitionistic Fuzzy Sets and Their Applications to Multiple Attribute Decision Making. Fuzzy Optim. Decis. Mak. 2007, 6, 109–121. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, L. New Distance Measures between Intuitionistic Fuzzy Sets and Interval-Valued Fuzzy Sets. Inf. Sci. 2013, 245, 181–196. [Google Scholar] [CrossRef]
- Szmidt, E.; Kacprzyk, J. Entropy for Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 2001, 118, 467–477. [Google Scholar] [CrossRef]
- Vlachos, I.K.; Sergiadis, G.D. Intuitionistic Fuzzy Information—Applications to Pattern Recognition. Pattern Recognit. Lett. 2007, 28, 197–206. [Google Scholar] [CrossRef]
- Ye, J. Two Effective Measures of Intuitionistic Fuzzy Entropy. Computing 2010, 87, 55–62. [Google Scholar] [CrossRef]
- Parkash, O.; Sharma, P.K.; Mahajan, R. New Measures of Weighted Fuzzy Entropy and Their Applications for the Study of Maximum Weighted Fuzzy Entropy Principle. Inf. Sci. 2008, 178, 2389–2395. [Google Scholar] [CrossRef]
- Guo, K.; Song, Q. On the Entropy for Atanassov’s Intuitionistic Fuzzy Sets: An Interpretation from the Perspective of Amount of Knowledge. Appl. Soft Comput. 2014, 24, 328–340. [Google Scholar] [CrossRef]
- Yuan, X.; Zheng, C. Improved Intuitionistic Fuzzy Entropy and Its Application in the Evaluation of Regional Collaborative Innovation Capability. Sustainability 2022, 14, 3129. [Google Scholar] [CrossRef]
- Liu, X.; Qian, F.; Lin, L.; Zhang, K.; Zhu, L. Intuitionistic Fuzzy Entropy for Group Decision Making of Water Engineering Project Delivery System Selection. Entropy 2019, 21, 1101. [Google Scholar] [CrossRef] [Green Version]
- Khaleie, S.; Fasanghari, M. An Intuitionistic Fuzzy Group Decision Making Method Using Entropy and Association Coefficient. Soft Comput. 2012, 7, 1197–1211. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Li, C.-H. Determining Objective Weights with Intuitionistic Fuzzy Entropy Measures: A Comparative Analysis. Inf. Sci. 2010, 180, 4207–4222. [Google Scholar] [CrossRef]
- Hung, C.-C.; Chen, L.-H. A Fuzzy TOPSIS Decision Making Model with Entropy Weight under Intuitionistic Fuzzy Environment. In Proceedings of the International Multiconference of Engineers and Computer Scientists, Hong Kong, China, 18–20 March 2009; IMECS: Hong Kong, China, 2009; Volume 1, pp. 13–16. [Google Scholar]
- Jefmański, B.; Dudek, A. Syntetyczna Miara Rozwoju Hellwiga Dla Trójkątnych Liczb Rozmytych [Hellwig’s Measure of Development for Triangular Fuzzy Numbers]. In Matematyka i Informatyka na Usługach Ekonomii. Wybrane Problemy Modelowania i Prognozowania Zjawisk Gospodarczych; Appenzeller, D., Ed.; Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu: Poznań, Poland, 2016; pp. 29–40. [Google Scholar]
- Ahn, B.S.; Park, K.S. Comparing Methods for Multiattribute Decision Making with Ordinal Weights. Comput. Oper. Res. 2008, 35, 1660–1670. [Google Scholar] [CrossRef]
- Stillwell, W.G.; Seaver, D.A.; Edwards, W. A Comparison of Weight Approximation Techniques in Multiattribute Utility Decision Making. Organ. Behav. Hum. Perform. 1981, 28, 62–77. [Google Scholar] [CrossRef]
- Edwards, W.; Barron, F.H. SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement. Organ. Behav. Hum. Decis. Process. 1994, 60, 306–325. [Google Scholar] [CrossRef]
- Bottomley, P.A.; Doyle, J.R.; Green, R.H. Testing the Reliability of Weight Elicitation Methods: Direct Rating versus Point Allocation. J. Mark. Res. 2000, 37, 508–513. [Google Scholar] [CrossRef]
- Bottomley, P.A.; Doyle, J.R. A Comparison of Three Weight Elicitation Methods: Good, Better, and Best. Omega 2001, 29, 553–560. [Google Scholar] [CrossRef]
- Doyle, J.R.; Green, R.H.; Bottomley, P.A. Judging Relative Importance: Direct Rating and Point Allocation Are Not Equivalent. Organ. Behav. Hum. Decis. Process. 1997, 70, 65–72. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Wachowicz, T.; Brzostowski, J.; Roszkowska, E. Reference Points-Based Methods in Supporting the Evaluation of Negotiation Offers. Oper. Res. Decis. 2012, 22, 122–137. [Google Scholar]
Alternative | C1 | C2 | C3 | |||
---|---|---|---|---|---|---|
μ | ν | μ | ν | μ | ν | |
A1 | 0.200 | 0.400 | 0.700 | 0.100 | 0.600 | 0.300 |
A2 | 0.400 | 0.200 | 0.500 | 0.200 | 0.800 | 0.100 |
A3 | 0.500 | 0.400 | 0.600 | 0.200 | 0.900 | 0.000 |
A4 | 0.300 | 0.500 | 0.800 | 0.100 | 0.700 | 0.200 |
A5 | 0.800 | 0.200 | 0.700 | 0.000 | 0.100 | 0.600 |
System of Weights | w = [0.3, 0.5, 0.2] | w = [0.1, 0.43, 0.47] | ||||
---|---|---|---|---|---|---|
Alternative | d+ | DIFSMi | Rank | d+ | DIFSMi | Rank |
A1 | 0.327 | 0.314 | 4 | 0.273 | 0.508 | 4 |
A2 | 0.292 | 0.389 | 3 | 0.225 | 0.594 | 3 |
A3 | 0.203 | 0.576 | 1 | 0.156 | 0.720 | 1 |
A4 | 0.265 | 0.445 | 2 | 0.205 | 0.630 | 2 |
A5 | 0.330 | 0.308 | 5 | 0.499 | 0.101 | 5 |
System of Weights | w = [0.3, 0.5, 0.2] | w = [0.1, 0.43, 0.47] | ||||||
---|---|---|---|---|---|---|---|---|
Alternative | d+ | d− | SMTOPSIS | Rank | d+ | d− | SMTOPSIS | Rank |
A1 | 0.673 | 0.763 | 0.469 | 5 | 0.727 | 0.679 | 0.517 | 4 |
A2 | 0.709 | 0.685 | 0.508 | 3 | 0.775 | 0.564 | 0.579 | 2 |
A3 | 0.798 | 0.639 | 0.555 | 1 | 0.844 | 0.494 | 0.631 | 1 |
A4 | 0.735 | 0.693 | 0.515 | 2 | 0.795 | 0.597 | 0.571 | 3 |
A5 | 0.670 | 0.682 | 0.495 | 4 | 0.501 | 0.790 | 0.388 | 5 |
System of Weights | w = [0.3, 0.5, 0.2] | w = [0.1, 0.43, 0.47] | ||||||
---|---|---|---|---|---|---|---|---|
Alternative | d+ | d− | IFTOPSIS | Rank | d+ | d− | IFTOPSIS | Rank |
A1 | 0.327 | 0.237 | 0.420 | 5 | 0.274 | 0.321 | 0.539 | 4 |
A2 | 0.292 | 0.315 | 0.519 | 3 | 0.226 | 0.436 | 0.658 | 3 |
A3 | 0.202 | 0.361 | 0.640 | 1 | 0.156 | 0.505 | 0.764 | 1 |
A4 | 0.265 | 0.307 | 0.537 | 2 | 0.206 | 0.403 | 0.661 | 2 |
A5 | 0.330 | 0.318 | 0.490 | 4 | 0.498 | 0.212 | 0.299 | 5 |
Measure | System of Weights | Ranking Results |
---|---|---|
DIFSM | w = [0.3, 0.5, 0.2] [46] | A3 > A4 > A2 > A1 > A5 |
DIFSM | w = [0.1, 0.43, 0.47] entropy-based | A3 > A4 > A2 > A1 > A5 |
SMTOPSIS | w = [0.3, 0.5, 0.2] [46] | A3 > A4 > A2 > A5 > A1 |
SMTOPSIS | w = [0.1, 0.43, 0.47] entropy-based | A3 > A2 > A4 > A1 > A5 |
IFTOPSIS | w = [0.3, 0.5, 0.2] [46] | A3 > A4 > A2 > A5 > A1 |
IFTOPSIS | w = [0.1, 0.43, 0.47] entropy-based | A3 > A4 > A2 > A1 > A5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roszkowska, E.; Jefmański, B.; Kusterka-Jefmańska, M. On Some Extension of Intuitionistic Fuzzy Synthetic Measures for Two Reference Points and Entropy Weights. Entropy 2022, 24, 1081. https://doi.org/10.3390/e24081081
Roszkowska E, Jefmański B, Kusterka-Jefmańska M. On Some Extension of Intuitionistic Fuzzy Synthetic Measures for Two Reference Points and Entropy Weights. Entropy. 2022; 24(8):1081. https://doi.org/10.3390/e24081081
Chicago/Turabian StyleRoszkowska, Ewa, Bartłomiej Jefmański, and Marta Kusterka-Jefmańska. 2022. "On Some Extension of Intuitionistic Fuzzy Synthetic Measures for Two Reference Points and Entropy Weights" Entropy 24, no. 8: 1081. https://doi.org/10.3390/e24081081
APA StyleRoszkowska, E., Jefmański, B., & Kusterka-Jefmańska, M. (2022). On Some Extension of Intuitionistic Fuzzy Synthetic Measures for Two Reference Points and Entropy Weights. Entropy, 24(8), 1081. https://doi.org/10.3390/e24081081