Automated Caries Screening Using Ensemble Deep Learning on Panoramic Radiographs
Abstract
:1. Introduction
2. Literature Review
3. Material and Method
3.1. Dataset
3.2. Method
3.2.1. Tooth Region Segmentation
3.2.2. Deep Pre-Trained Network as Feature Descriptors
3.2.3. Classification
3.2.4. Majority Voting
4. Measures and Result Assessment
4.1. Measures
4.2. Result Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Oral Health. Available online: https://www.who.int/health-topics/oral-health/ (accessed on 1 October 2020).
- Gift, H.C.; Redford, M. Oral Health and The Quality Of Life. Clin. Geriatr. Med. 1992, 8, 673–684. [Google Scholar] [CrossRef]
- Hennessy, B.J. Caries. 2021. Available online: https://www.msdmanuals.com/professional/dental-disorders/common-dental-disorders/caries (accessed on 16 August 2022).
- Kim, S.H.; Kim, K.B.; Choo, H. New Frontier in Advanced Dentistry: CBCT, Intraoral Scanner, Sensors, and Artificial Intelligence in Dentistry. Sensors 2022, 22, 2942. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, A.; Ronsivalle, V.; Spampinato, C.; Leonardi, R. Fully automatic segmentation of the mandible based on convolutional neural networks (CNNs). Orthod. Craniofacial Res. 2021, 24, 100–107. [Google Scholar] [CrossRef]
- Mosquera-Lopez, C.; Agaian, S.; Velez-Hoyos, A.; Thompson, I. Computer-Aided Prostate Cancer Diagnosis From Digitized Histopathology: A Review on Texture-Based Systems. IEEE Rev. Biomed. Eng. 2015, 8, 98–113. [Google Scholar] [CrossRef]
- Mansour, R.F. Evolutionary Computing Enriched Computer-Aided Diagnosis System for Diabetic Retinopathy: A Survey. IEEE Rev. Biomed. Eng. 2017, 10, 334–349. [Google Scholar] [CrossRef] [PubMed]
- Sampathkumar, A.; Hughes, D.A.; Kirk, K.J.; Otten, W.; Longbottom, C. All-optical photoacoustic imaging and detection of early-stage dental caries. In Proceedings of the 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014; pp. 1269–1272. [Google Scholar]
- Hughes, D.A.; Girkin, J.M.; Poland, S.; Longbottom, C.; Cochran, S. Focused ultrasound for early detection of tooth decay. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Rome, Italy, 20–23 September 2009; pp. 1–3. [Google Scholar]
- Usenik, P.; Bürmen, M.; Fidler, A.; Pernuš, F.; Likar, B. Near-infrared hyperspectral imaging of water evaporation dynamics for early detection of incipient caries. J. Dent. 2014, 42, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- Maslak, E.; Khudanov, B.; Krivtsova, D.; Tsoy, T. Application of Information Technologies and Quantitative Light-Induced Fluorescence for the Assessment of Early Caries Treatment Outcomes. In Proceedings of the 2019 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia, 7–10 October 2019; pp. 912–917. [Google Scholar]
- Angelino, K.; Edlund, D.A.; Shah, P. Near-Infrared Imaging for Detecting Caries and Structural Deformities in Teeth. IEEE J. Transl. Eng. Health Med. 2017, 5, 2300107. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kuang, W.; Li, Y.; Li, Y.; Ye, W. Clinical X-ray Image Based Tooth Decay Diagnosis using SVM. In Proceedings of the 2007 International Conference on Machine Learning and Cybernetics, Hong Kong, China, 19–22 August 2007; pp. 1616–1619. [Google Scholar]
- Yu, Y.; Li, Y.; Li, Y.-J.; Wang, J.-M.; Lin, D.-H.; Ye, W.-P. Tooth Decay Diagnosis using Back Propagation Neural Network. In Proceedings of the 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, 13–16 August 2006; pp. 3956–3959. [Google Scholar]
- Patil, S.; Kulkarni, V.; Bhise, A. Intelligent system with dragonfly optimisation for caries detection. IET Image Process. 2019, 13, 429–439. [Google Scholar] [CrossRef]
- Loog, M.; Duin, R.P.W. Linear dimensionality reduction via a heteroscedastic extension of LDA: The Chernoff criterion. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 732–739. [Google Scholar]
- Lazcano, R.; Madroñal, D.; Salvador, R.; Desnos, K.; Pelcat, M.; Guerra, R.; Fabelo, H.; Ortega, S.; López, S.; Callicó, G.M.; et al. Porting a PCA-based hyperspectral image dimensionality reduction algorithm for brain cancer detection on a manycore architecture. J. Syst. Archit. 2017, 77, 101–111. [Google Scholar] [CrossRef]
- Montefusco-Siegmund, R.; Maldonado, P.E.; Devia, C. Effects of ocular artifact removal through ICA decomposition on EEG phase. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 6–8 November 2013; pp. 1374–1377. [Google Scholar]
- Pan, W.-T. A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example. Knowl.-Based Syst. 2012, 26, 69–74. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Singh, P.; Sehgal, P. Automated caries detection based on Radon transformation and DCT. In Proceedings of the 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, India, 3–5 July 2017; pp. 1–6. [Google Scholar]
- Tuan, T.M.; Fujita, H.; Dey, N.; Ashour, A.S.; Ngoc, V.T.N.; Chu, D.T. Dental diagnosis from X-ray images: An expert system based on fuzzy computing. Biomed. Signal Process. Control 2018, 39, 64–73. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Wu, S.; Zhong, S.; Liu, Y. Deep residual learning for image steganalysis. Multimed. Tools Appl. 2018, 77, 10437–10453. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Iandola, F.; Han, S.; Moskewicz, M.; Ashraf, K.; Dally, W.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Bui, T.H.; Hamamoto, K.; Paing, M.P. Tooth Localization using YOLOv3 for Dental Diagnosis on Panoramic Radiographs. IEEJ Trans. Electron. Inf. Syst. 2022, 142, 557–562. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Fix, E.; Hodges, J.L. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. Int. Stat. Rev./Rev. Int. Stat. 1989, 57, 238–247. [Google Scholar] [CrossRef]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef]
- Tin Kam, H. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 271, pp. 278–282. [Google Scholar]
- Irle, A.; Kauschke, J. On Kleinberg’s Stochastic Discrimination Procedure. Pattern Anal. Mach. Intell. IEEE Trans. 2011, 33, 1482–1486. [Google Scholar] [CrossRef]
- Kleinberg, E.M. An overtraining-resistant stochastic modeling method for pattern recognition. Ann. Stat. 1996, 24, 2319–2349. [Google Scholar] [CrossRef]
- Kleinberg, E.M. On the algorithmic implementation of stochastic discrimination. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 473–490. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Mini batch size | 32 |
Number of anchor box | 11 |
Iteration | 1000 |
Initial learning rate | 0.001 |
L2regularization | 0.0005 |
Network Name | Depth | Size (MB) | Parameter (×106) | Input Size |
---|---|---|---|---|
VGG16 | 23 | 528 | 138.4 | 227 × 227 × 3 |
VGG19 | 26 | 549 | 143.7 | 224 × 224 × 3 |
Resnet18 | 18 | 45 | 11.5 | 224 × 224 × 3 |
Resnet50 | 50 | 98 | 25.6 | 224 × 224 × 3 |
Resnet101 | 101 | 171 | 44.7 | 224 × 224 × 3 |
Xception | 126 | 88 | 22.9 | 224 × 224 × 3 |
Densenet201 | 201 | 77 | 88.9 | 299 × 299 × 3 |
Classifier | Measure | VGG16 | VGG19 | Resnet18 | Resnet50 | Resnet101 | Xception | Densenet | Voting |
---|---|---|---|---|---|---|---|---|---|
Random Forest | Accuracy | 0.4717 | 0.4528 | 0.5472 | 0.4528 | 0.3774 | 0.4906 | 0.4528 | 0.4528 |
Sensitivity | 0.9565 | 1.0000 | 0.8696 | 1.0000 | 0.8261 | 1.0000 | 1.0000 | 1.0000 | |
Specificity | 0.1000 | 0.0333 | 0.3000 | 0.0333 | 0.0333 | 0.1000 | 0.0333 | 0.0333 | |
PPV | 0.4490 | 0.4423 | 0.4878 | 0.4423 | 0.3958 | 0.4600 | 0.4423 | 0.4423 | |
NPV | 0.7500 | 1.0000 | 0.7500 | 1.0000 | 0.2000 | 1.0000 | 1.0000 | 1.0000 | |
F1-score | 0.4400 | 0.4423 | 0.4545 | 0.4423 | 0.3654 | 0.4600 | 0.4423 | 0.4423 | |
K-nearest Neighbor | Accuracy | 0.7925 | 0.6981 | 0.7547 | 0.7736 | 0.8679 | 0.7736 | 0.6415 | 0.8491 |
Sensitivity | 0.6957 | 0.6087 | 0.6957 | 0.6087 | 0.6957 | 0.6087 | 0.4783 | 0.6957 | |
Specificity | 0.8667 | 0.7667 | 0.8000 | 0.9000 | 1.0000 | 0.9000 | 0.7667 | 0.9667 | |
PPV | 0.8000 | 0.6667 | 0.7273 | 0.8235 | 1.0000 | 0.8235 | 0.6111 | 0.9412 | |
NPV | 0.7879 | 0.7188 | 0.7742 | 0.7500 | 0.8108 | 0.7500 | 0.6571 | 0.8056 | |
F1-score | 0.5926 | 0.4667 | 0.5517 | 0.5385 | 0.6957 | 0.5385 | 0.3667 | 0.6667 | |
Support Vector Machine | Accuracy | 0.7925 | 0.8868 | 0.8302 | 0.8679 | 0.8868 | 0.8491 | 0.9057 | 0.9245 |
Sensitivity | 0.7391 | 0.9130 | 0.8261 | 0.8696 | 0.8261 | 0.7391 | 0.9565 | 0.9565 | |
Specificity | 0.8333 | 0.8667 | 0.8333 | 0.8667 | 0.9333 | 0.9333 | 0.8667 | 0.9000 | |
PPV | 0.7727 | 0.8400 | 0.7917 | 0.8333 | 0.9048 | 0.8947 | 0.8462 | 0.8800 | |
NPV | 0.8065 | 0.9286 | 0.8621 | 0.8966 | 0.8750 | 0.8235 | 0.9630 | 0.9643 | |
F1-score | 0.6071 | 0.7778 | 0.6786 | 0.7407 | 0.7600 | 0.6800 | 0.8148 | 0.8462 |
Measure | Fold-1 | Fold-2 | Fold-3 | Fold-4 | Fold-5 | Mean |
---|---|---|---|---|---|---|
Accuracy | 0.9623 | 0.9245 | 0.9245 | 0.9057 | 0.9623 | 0.9358 |
Sensitivity | 0.9565 | 0.9565 | 0.9565 | 0.9130 | 0.9130 | 0.9391 |
Specificity | 0.9667 | 0.9000 | 0.9000 | 0.9000 | 1.0000 | 0.9333 |
PPV | 0.9565 | 0.8800 | 0.8800 | 0.8750 | 1.0000 | 0.9183 |
NPV | 0.9667 | 0.9643 | 0.9643 | 0.9310 | 0.9375 | 0.9528 |
F1-score | 0.9565 | 0.9166 | 0.9166 | 0.8936 | 0.9545 | 0.9276 |
AUC | 0.9609 | 0.9174 | 0.9333 | 0.9290 | 0.9768 | 0.9346 |
Function Name | Time(s) |
---|---|
Load data | 0.78 |
VGG16 + SVM training | 10.35 |
VGG19 + SVM training | 10.89 |
Resnet18 + SVM training | 4.33 |
Resnet50 + SVM training | 6.20 |
Resnet101 + SVM training | 8.21 |
Xception + SVM training | 10.53 |
Densenet + SVM training | 113.7 |
Voting and Prediction | 0.40 |
Total | 165.39 |
References | Method | Samples | ACC% | SEN% | SPEC% |
---|---|---|---|---|---|
[14,15] | Auto-correlation coefficients matrix Neural network | 120 periapical images | 73.33 | 77.67 | 53.33 |
[15] | Multi-linear principal component analysis Non-linear programming with adaptive dragonfly algorithm Neural network | 120 periapical images | 90.00 | 94.67 | 63.33 |
[21] | Radon transformation Discrete Cosine transformation Principal component analysis Random forest | 93 panoramic images | 86.00 | 91.00 | 80.00 |
[22] | Semi-supervised fuzzy clustering Graph-based clustering | 87 mixed panoramic and periapical images | 92.47 | - | - |
Proposed method | Deep activated features Geometric features SVM classification | 95 panoramic images (533 tooth region images) | 93.58 | 93.91 | 93.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, T.H.; Hamamoto, K.; Paing, M.P. Automated Caries Screening Using Ensemble Deep Learning on Panoramic Radiographs. Entropy 2022, 24, 1358. https://doi.org/10.3390/e24101358
Bui TH, Hamamoto K, Paing MP. Automated Caries Screening Using Ensemble Deep Learning on Panoramic Radiographs. Entropy. 2022; 24(10):1358. https://doi.org/10.3390/e24101358
Chicago/Turabian StyleBui, Toan Huy, Kazuhiko Hamamoto, and May Phu Paing. 2022. "Automated Caries Screening Using Ensemble Deep Learning on Panoramic Radiographs" Entropy 24, no. 10: 1358. https://doi.org/10.3390/e24101358
APA StyleBui, T. H., Hamamoto, K., & Paing, M. P. (2022). Automated Caries Screening Using Ensemble Deep Learning on Panoramic Radiographs. Entropy, 24(10), 1358. https://doi.org/10.3390/e24101358