GIS-Based Emotional Computing: A Review of Quantitative Approaches to Measure the Emotion Layer of Human–Environment Relationships
Abstract
:1. Introduction
2. Emotion Recognition
2.1. Self-Reported
2.2. Body Sensor
2.3. UGC Text-Based
2.4. UGC Image-Based
3. Analyzing Collective Emotion with GIS
3.1. The Temporal and Spatial Distribution of Human Emotions
3.2. The Impact of Environment on Collective Emotion
3.3. Collective Emotion as Indicators
4. Challenges and Opportunities
5. Example of Implementing GIS-Based Emotional Computing
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, C. On the core of geography-The regional system of man-land relationship (Man-earth areal system: The core of geographical study). Econ. Geogr. 1991, 3, 7–12. (In Chinese) [Google Scholar] [CrossRef]
- Pattison, W.D. The four traditions of geography. J. Geogr. 1964, 63, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Mei, L. Human-activity-geographical-environment relationship. Syst. Em. Reg. Syst. Econ. Geogr. 2001, 21, 532–537. (In Chinese) [Google Scholar] [CrossRef]
- Gao, C.; Lei, J.; Jin, F. The classification and assessment of vulnerability of man-land system of oasis city in arid area. Front. Earth Sci. 2013, 7, 406–416. [Google Scholar] [CrossRef]
- Gimblett, R.; Daniel, T.; Cherry, S.; Meitner, M.J. The simulation and visualization of complex human–environment interactions. Landsc. Urban Plan. 2001, 54, 63–79. [Google Scholar] [CrossRef]
- Olson, J.M.; Alagarswamy, G.; Andresen, J.A.; Campbell, D.J.; Davis, A.Y.; Ge, J.; Huebner, M.; Lofgren, B.; Lusch, D.P.; Moore, N.J.; et al. Integrating diverse methods to understand climate–land interactions in East Africa. Geoforum 2008, 39, 898–911. [Google Scholar] [CrossRef]
- Shafer, C.; Lee, B.K.; Turner, S. A tale of three greenway trails: User perceptions related to quality of life. Landsc. Urban Plan. 2000, 49, 163–178. [Google Scholar] [CrossRef]
- Munda, G. Measuring sustainability: A multi-criterion framework. Environ. Dev. Sustain. 2005, 7, 117–134. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, G. Evaluation on the man-land relationship coordination degree in Wangcheng District of Changsha City. J. Hum. Settl. West China 2018, 33, 54–58. [Google Scholar] [CrossRef]
- Jorgensen, B.S.; Stedman, R.C. Sense of place as an attitude: Lakeshore owners attitudes toward their properties. J. Environ. Psychol. 2001, 21, 233–248. [Google Scholar] [CrossRef]
- Tuan, Y.-F. Space and Place: Humanistic Perspective. In Philosophy in Geography; Gale, S., Olsson, G., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 1979; pp. 387–427. [Google Scholar]
- Petrantonakis, P.C.; Hadjileontiadis, L.J. Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis. IEEE Trans. Affect. Comput. 2010, 1, 81–97. [Google Scholar] [CrossRef]
- Howell, A.J.; Dopko, R.L.; Passmore, H.-A.; Buro, K. Nature connectedness: Associations with well-being and mindfulness. Pers. Individ. Differ. 2011, 51, 166–171. [Google Scholar] [CrossRef]
- Nisbet, E.K.; Zelenski, J.M. Underestimating Nearby Nature: Affective Forecasting Errors Obscure the Happy Path to Sustainability. Psychol. Sci. 2011, 22, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Capaldi, C.A.; Dopko, R.L.; Zelenski, J.M. The relationship between nature connectedness and happiness: A meta-analysis. Front. Psychol. 2014, 5, 976. [Google Scholar] [CrossRef] [Green Version]
- Easterlin, R.A. Does Economic Growth Improve the Human Lot? Some Empirical Evidence. In Nations and Households in Economic Growth; David, P.A., Reder, M.W., Eds.; Academic Press: Cambridge, MA, USA, 1974; pp. 89–125. [Google Scholar]
- Singh, V.K.; Atrey, A.; Hegde, S. Do individuals smile more in diverse social company? Studying smiles and diversity via social media photos. In Proceedings of the 25th ACM international conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1818–1827. [Google Scholar]
- Picard, R.W. Affective Computing; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Picard, R.W. Affective computing: Challenges. Int. J. Hum.-Comput. Stud. 2003, 59, 55–64. [Google Scholar] [CrossRef]
- Barrett, K.C.; Campos, J.J. Perspectives on emotional development II: A functionalist approach to emotions. In Handbook of Infant Development, 2nd ed.; Wiley Series on Personality Processes; John Wiley & Sons: Oxford, UK, 1987; pp. 555–578. [Google Scholar]
- Ekman, P. An argument for basic emotions. Cogn. Emot. 1992, 6, 169–200. [Google Scholar] [CrossRef]
- Frijda, N.H.; Mesquita, B. The social roles and functions of emotions. In Emotion and Culture: Empirical Studies of Mutual Influence; American Psychological Association: Washington, DC, USA, 1994; pp. 51–87. [Google Scholar] [CrossRef]
- Keltner, D.; Kring, A.M. Emotion, social function, and psychopathology. Rev. Gen. Psychol. 1998, 2, 320–342. [Google Scholar] [CrossRef]
- Harker, L.; Keltner, D. Expressions of positive emotion in women’s college yearbook pictures and their relationship to personality and life outcomes across adulthood. J. Pers. Soc. Psychol. 2001, 80, 112–124. [Google Scholar] [CrossRef]
- Hertenstein, M.J.; Hansel, C.; Butts, A.M.; Hile, S.N. Smile intensity in photographs predicts divorce later in life. Motiv. Emot. 2009, 33, 99–105. [Google Scholar] [CrossRef]
- Paulhus, D.L.; Vazire, S. The self-report method. In Handbook of Research Methods in Personality Psychology; The Guilford Press: New York, NY, USA, 2007; pp. 224–239. [Google Scholar]
- Lucas, R.E.; Baird, B.M. Global Self-Assessment; American Psychological Association: Washington, DC, USA, 2006; pp. 29–42. [Google Scholar]
- Swann, W.B.; Chang-Schneider, C.; McClarty, K.L. Do people’s self-views matter? Self-concept and self-esteem in everyday life. Am. Psychol. 2007, 62, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Andrade, E.; Leyva, R.; Kwan, M.-P.; Magis, C.; Stainez-Orozco, H.; Brouwer, K. Women in sex work and the risk environment: Agency, risk perception, and management in the sex work environments of two Mexico-U.S. border cities. Sex. Res. Soc. Policy 2018, 16, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Stedman, R.C. Is it really just a social construction? The contribution of the physical environment to sense of place. Soc. Nat. Resour. 2003, 16, 671–685. [Google Scholar] [CrossRef]
- Robinson, M.D.; Clore, G.L. Episodic and semantic knowledge in emotional self-report: Evidence for two judgment processes. J. Pers. Soc. Psychol. 2002, 83, 198–215. [Google Scholar] [CrossRef] [PubMed]
- Barrett, L.F.; Robin, L.; Pietromonaco, P.R.; Eyssell, K.M. Are women the “more emotional” sex? Evidence from emotional experiences in social context. Cogn. Emot. 1998, 12, 555–578. [Google Scholar] [CrossRef]
- Diener, E.; Larsen, R. Temporal stability and cross-situational consistency of affective, behavioral, and cognitive responses. Bord. Glob. World 2009, 39, 7–24. [Google Scholar] [CrossRef]
- Diener, E.; Diener, M.; Diener, C. Factors predicting the subjective well-being of nations. J. Pers. Soc. Psychol. 1995, 69, 851–864. [Google Scholar] [CrossRef]
- Diener, E.; Inglehart, R.; Tay, L. Theory and validity of life satisfaction scales. Soc. Indic. Res. 2012, 112, 497–527. [Google Scholar] [CrossRef]
- White, M.P.; Alcock, I.; Wheeler, B.W.; Depledge, M. Would you be happier living in a greener urban area? A fixed-effects analysis of panel data. Psychol. Sci. 2013, 24, 920–928. [Google Scholar] [CrossRef]
- Wheeler, B.W.; White, M.P.; Stahl-Timmins, W.; Depledge, M. Does living by the coast improve health and wellbeing? Health Place 2012, 18, 1198–1201. [Google Scholar] [CrossRef] [Green Version]
- Bates, W. Gross national happiness. Asian-Pac. Econ. Lit. 2009, 23, 1–16. [Google Scholar] [CrossRef]
- Quercia, D. Don’t worry, be happy: The geography of happiness on Facebook. In Proceedings of the 5th Annual ACM Web Science Conference, Paris, France, 2–4 May 2013. [Google Scholar]
- The United Nations Sustainable Development Solutions Network. World Happiness Report. 2019. Available online: https://worldhappiness.report/ (accessed on 15 July 2020).
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The satisfaction with life scale. J. Pers. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Pers. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Laurent, J.; Catanzaro, S.J.; Joiner, T.E.; Rudolph, K.D.; Potter, K.I.; Lambert, S.; Osborne, L.; Gathright, T. A measure of positive and negative affect for children: Scale development and preliminary validation. Psychol. Assess. 1999, 11, 326–338. [Google Scholar] [CrossRef]
- Brave, S.; Nass, C. Emotion in human–computer interaction. In The Human-Computer Interaction Handbook; Jacko, J.A., Sears, A., Eds.; L. Erlbaum Associates Inc.: Hillsdale, NJ, USA, 2002; pp. 81–96. [Google Scholar]
- Muller, M.J.; Wharton, C. Toward an HCI research and practice agenda based on human needs and social responsibility. In Proceedings of the Human Factors in Computing Systems, CHI’97: Looking to the Future, Atlanta, GA, USA, 22–27 March 1997. [Google Scholar] [CrossRef]
- Kapoor, A.; Burleson, W.; Picard, R.W. Automatic prediction of frustration. Int. J. Hum.-Comput. Stud. 2007, 65, 724–736. [Google Scholar] [CrossRef]
- Ollander, S.; Godin, C.; Campagne, A.; Charbonnier, S. A comparison of wearable and stationary sensors for stress detection. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 9–12 October 2016; pp. 004362–004366. [Google Scholar]
- Choi, J.; Ahmed, B.; Gutierrez-Osuna, R. Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2011, 16, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Rani, P.; Liu, C.; Sarkar, N.; Vanman, E.J. An empirical study of machine learning techniques for affect recognition in human–robot interaction. Pattern Anal. Appl. 2006, 9, 58–69. [Google Scholar] [CrossRef]
- Healey, J.; Picard, R. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, I.; Cooper, D.G.; Burleson, W.S.; Woolf, B.P.; Muldner, K.; Christopherson, R. Emotion sensors go to school. In Proceedings of the Artificial Intelligence in Education, Brighton, UK, 6–10 July 2009. [Google Scholar]
- Woolf, B.; Dragon, T.; Arroyo, I.; Cooper, D.G.; Burleson, W.; Muldner, K. Recognizing and Responding to Student Affect. In Proceedings of the the International Conference on Human-Computer Interaction, San Diego, CA, USA, 19–24 July 2009. [Google Scholar]
- Jerritta, S.; Murugappan, M.; Nagarajan, R.; Wan, K. Physiological signals based human emotion Recognition: A review. In Proceedings of the International Colloquium on Signal Processing and Its Applications, Penang, Malaysia, 4–6 March 2011. [Google Scholar]
- Goodchild, M.F. The quality of big (geo) data. Dialog- Hum. Geogr. 2013, 3, 280–284. [Google Scholar] [CrossRef]
- Pang, B.; Lee, L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of the Association for Computational Linguistics, Barcelona, Spain, 22 July 2004; pp. 271–278. [Google Scholar] [CrossRef] [Green Version]
- Read, J. Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In Proceedings of the ACL Student Research Workshop, Ann Arbor, MI, USA, 27 June 2005. [Google Scholar]
- Feng, S.; Wang, D.; Yu, G.; Gao, W.; Wong, K.-F. Extracting common emotions from blogs based on fine-grained sentiment clustering. Knowl. Inf. Syst. 2010, 27, 281–302. [Google Scholar] [CrossRef]
- Strapparava, C.; Valitutti, A. WordNet affect: An affective extension of WordNet. In Proceedings of the Language Resources and Evaluation, Lisbon, Portugal, 26–28 May 2004. [Google Scholar]
- Poria, S.; Gelbukh, A.; Cambria, E.; Hussain, A.; Huang, G.-B. EmoSenticSpace: A novel framework for affective common-sense reasoning. Knowl.-Based Syst. 2014, 69, 108–123. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, S.M.; Turney, P.D. Crowdsourcing a word-emotion association lexicon. Comput. Intell. 2012, 29, 436–465. [Google Scholar] [CrossRef] [Green Version]
- Chakraverty, S.; Sharma, S.; Bhalla, I. Emotion–location mapping and analysis using twitter. J. Inf. Knowl. Manag. 2015, 14, 1550022. [Google Scholar] [CrossRef]
- El Kaliouby, R.; Robinson, P. Mind reading machines: Automated inference of cognitive mental states from video. In Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics, The Hague, The Netherlands, 10–13 October 2004. [Google Scholar]
- Ekman, P.; Friesen, W.V. Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 1971, 17, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Ekman, P.; Friesen, W.V.; Hager, J.C. Facial Action Coding System. The Manual; Consulting Psychologists Press: San Francisco, CA, USA, 1978. [Google Scholar]
- Bartlett, M.S.; Littlewort, G.; Frank, M.G.; Lainscsek, C.; Fasel, I.R.; Movellan, J. Automatic recognition of facial actions in spontaneous expressions. J. Multimed. 2006, 1. [Google Scholar] [CrossRef]
- Gross, R.; Matthews, I.; Cohn, J.; Kanade, T.; Baker, S. Multi-PIE. Image Vis. Comput. 2010, 28, 807–813. [Google Scholar] [CrossRef]
- Dhall, A.; Goecke, R.; Lucey, S.; Gedeon, T. Collecting large, richly annotated facial-expression databases from movies. IEEE Multimed. 2012, 19, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z. Image based static facial expression recognition with multiple deep network learning. In Proceedings of the Acm on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015. [Google Scholar]
- Takac, P.; Sincak, P.; Mach, M. Lecture improvement using students emotion assessment provided as SaS for teachers. In Proceedings of the 2016 International Conference on Emerging eLearning Technologies and Applications (ICETA), Vysoke Tatry, Slovakia, 24–25 November 2016. [Google Scholar]
- Abdullah, S.; Murnane, E.L.; Costa, J.M.R.; Choudhury, T. Collective smile: Measuring societal happiness from Geolocated Images. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, Vancouver, BC, Canada, 14–18 March 2015. [Google Scholar]
- English, T.; Carstensen, L.L. Emotional experience in the mornings and the evenings: Consideration of age differences in specific emotions by time of day. Front. Psychol. 2014, 5, 185. [Google Scholar] [CrossRef]
- Allisio, L.; Mussa, V.; Bosco, C.; Patti, V.; Ruffo, G.F. Felicittà: Visualizing and estimating happiness in italian cities from geotagged tweets. In Proceedings of the 1st International Workshop on Emotion and Sentiment in Social and Expressive Media: Approaches and perspectives from AI, Turin, Italy, 3 October 2013. [Google Scholar]
- Jang, M.-H. Three-dimensional visualization of an emotional map with geographical information systems: A case study of historical and cultural heritage in the Yeongsan River Basin, Korea. Int. J. Geogr. Inf. Sci. 2012, 26, 1393–1413. [Google Scholar] [CrossRef]
- Golder, S.A.; Macy, M.W. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 2011, 333, 1878–1881. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Zeng, X.; Zhang, Z.; Wang, Y.; Fei, T. Who are happier? Spatio-temporal analysis of worldwide human emotion based on geo-crowdsourcing faces. In Proceedings of the Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), Wuhan, China, 22–23 March 2018. [Google Scholar]
- Easterlin, R.A.; Morgan, R.; Switek, M.; Wang, F. China’s life satisfaction, 1990–2010. Proc. Natl. Acad. Sci. USA 2012, 109, 9775–9780. [Google Scholar] [CrossRef] [Green Version]
- Everett, G. Measuring national well-being: A UK perspective. Rev. Income Wealth 2015, 61, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Plunz, R.A.; Zhou, Y.; Vintimilla, M.I.C.; McKeown, K.; Yu, T.; Uguccioni, L.; Sutto, M.P. Twitter sentiment in New York City parks as measure of well-being. Landsc. Urban Plan. 2019, 189, 235–246. [Google Scholar] [CrossRef]
- Hu, Y.; Deng, C.; Zhou, Z. A semantic and sentiment analysis on online neighborhood reviews for understanding the perceptions of people toward their living environments. Ann. Am. Assoc. Geogr. 2019, 1–21. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Sun, C.; Zhang, X.; Kahn, M.E. Air pollution lowers Chinese urbanites’ expressed happiness on social media. Nat. Hum. Behav. 2019, 3, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Zijlema, W.; Wolf, K.; Emeny, R.; Ladwig, K.; Peters, A.; Kongsgård, H.; Hveem, K.; Kvaløy, K.; Yli-Tuomi, T.; Partonen, T.; et al. The association of air pollution and depressed mood in 70,928 individuals from four European cohorts. Int. J. Hyg. Environ. Health 2016, 219, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Svoray, T.; Dorman, M.; Shahar, G.; Kloog, I. Demonstrating the effect of exposure to nature on happy facial expressions via Flickr data: Advantages of non-intrusive social network data analyses and geoinformatics methodologies. J. Environ. Psychol. 2018, 58, 93–100. [Google Scholar] [CrossRef]
- Mayer, F.; Frantz, C.M. The connectedness to nature scale: A measure of individuals’ feeling in community with nature. J. Environ. Psychol. 2004, 24, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Jia, Q.; Gao, S.; Zeng, X.; Wang, Y.; Angsüsser, S.; Liu, Y.; Ye, X.; Fei, T. Extracting human emotions at different places based on facial expressions and spatial clustering analysis. Trans. GIS 2019, 23, 450–480. [Google Scholar] [CrossRef]
- MacKerron, G.; Mourato, S. Happiness is greater in natural environments. Glob. Environ. Chang. 2013, 23, 992–1000. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.W.; Roe, J.J.; Aspinall, P.A.; Mitchell, R.; Clow, A.; Miller, D. More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns. Landsc. Urban Plan. 2012, 105, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Li, D.; Larsen, L.; Sullivan, W.C. A dose-response curve describing the relationship between urban tree cover density and self-reported stress recovery. Environ. Behav. 2014, 48, 607–629. [Google Scholar] [CrossRef]
- Welsch, H. Environment and happiness: Valuation of air pollution using life satisfaction data. Ecol. Econ. 2006, 58, 801–813. [Google Scholar] [CrossRef]
- Kaplan, R. The Nature of the View from Home: Psychological Benefits. Environ. Behav. 2001, 33, 507–542. [Google Scholar] [CrossRef]
- Grahn, P.; Stigsdotter, U.A. Landscape planning and stress. Urban For. Urban Green. 2003, 2, 1–18. [Google Scholar] [CrossRef] [Green Version]
- De Vries, S.; Verheij, R.A.; Groenewegen, P.P.; Spreeuwenberg, P. Natural environments—Healthy environments? An exploratory analysis of the relationship between greenspace and health. Environ. Plan. A Econ. Space 2003, 35, 1717–1731. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Mu, L.; Shen, Y. Effect of climate and seasonality on depressed mood among twitter users. Appl. Geogr. 2015, 63, 184–191. [Google Scholar] [CrossRef]
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Chi, G.; Shi, L. Social sensing: A new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Zeile, P.; Resch, B.; Exner, J.-P.; Sagl, G. Urban emotions: Benefits and risks in using human sensory assessment for the extraction of contextual emotion information in urban planning. In Planning Support Systems and Smart Cities; Geertman, S., Ferreira, J.J., Goodspeed, R., Stillwell, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 209–225. [Google Scholar] [CrossRef]
- Alfarrarjeh, A.; Agrawal, S.; Kim, S.H.; Shahabi, C. Geo-spatial multimedia sentiment analysis in disasters. In Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan, 19–21 October 2017. [Google Scholar]
- Do, H.J.; Lim, C.-G.; Kim, Y.J.; Choi, H.-J. Analyzing emotions in twitter during a crisis: A case study of the 2015 Middle East Respiratory Syndrome outbreak in Korea. In Proceedings of the 2016 International Conference on Big Data and Smart Computing (BigComp), Hong Kong, China, 18–20 January 2016; pp. 415–418. [Google Scholar] [CrossRef]
- Chien, Y.; Comber, A.; Carver, S. Does Flickr work in disaster management?—A case study of Typhoon Morakot in Taiwan. In Proceedings of the GIS Research UK (GISRUK), Manchester, UK, 18–21 April 2017. [Google Scholar]
- Dewan, P.; Bharadhwaj, V.; Mithal, A.; Suri, A.; Kumaraguru, P. Visual themes and sentiment on social networks to aid first responders during crisis events. arXiv 2016, arXiv:1610.07772. [Google Scholar]
- Resch, B.; Summa, A.; Zeile, P.; Strube, M. Citizen-centric urban planning through extracting emotion information from twitter in an interdisciplinary space-time-linguistics algorithm. Urban Plan. 2016, 1, 114. [Google Scholar] [CrossRef]
- López-Ornelas, E.; Zaragoza, N.M. Social Media Participation: A Narrative Way to Help Urban Planners. In Social Computing and Social Media; Meiselwitz, G., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 48–54. [Google Scholar]
- Zhen, F.; Tang, J.; Chen, Y. Spatial distribution characteristics of residents’ emotions based on Sina Weibo big data: A case study of Nanjing. In Big Data Support of Urban Planning and Management: The Experience in China; Shen, Z., Li, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 43–62. [Google Scholar]
- Hijazi, I.H.; Koenig, R.; Schneider, S.; Li, X.; Bielik, M.; Schmit, G.N.J.; Donath, D. Geostatistical analysis for the study of relationships between the emotional responses of urban walkers to urban spaces. Int. J. E-Plan. Res. 2016, 5, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhou, B.; Liu, L.; Liu, Y.; Fung, H.H.; Lin, H.; Ratti, C. Measuring human perceptions of a large-scale urban region using machine learning. Landsc. Urban Plan. 2018, 180, 148–160. [Google Scholar] [CrossRef]
- Diener, E.; Diener, M.L. Cross-cultural correlates of life satisfaction and self-esteem. J. Personal. Soc. Psychol. 1995, 68, 653–663. [Google Scholar] [CrossRef]
- Kitayama, S.; Markus, H.R.; Kurokawa, M. Culture, emotion, and well-being: Good feelings in Japan and the United States. Cogn. Emot. 2000, 14, 93–124. [Google Scholar] [CrossRef]
- Wierzbicka, A. Emotion, language, and cultural scripts. In Emotion and Culture: Empirical Studies of Mutual Influence; American Psychological Association: Washington, DC, USA, 2004; pp. 133–196. [Google Scholar]
- Ellsworth, P.C. Sense, Culture, and Sensibility; Kitayama, S., Ed.; American Psychological Association (APA): Washington, DC, USA, 1994. [Google Scholar] [CrossRef]
- Suh, E.; Diener, E.; Oishi, S.; Triandis, H.C. The shifting basis of life satisfaction judgments across cultures: Emotions versus norms. J. Pers. Soc. Psychol. 1998, 74, 482–493. [Google Scholar] [CrossRef]
- Lafrance, M.; Hecht, M.A.; Paluck, E.L. The contingent smile: A meta-analysis of sex differences in smiling. Psychol. Bull. 2003, 129, 305–334. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.J.; Carstensen, L.L.; Pasupathi, M.; Tsai, J.; Skorpen, C.G.; Hsu, A.Y.C. Emotion and aging: Experience, expression, and control. Psychol. Aging 1997, 12, 590–599. [Google Scholar] [CrossRef]
- Doytsher, Y.; Galon, B.; Kanza, Y. Emotion maps based on Geotagged posts in the social media. In Proceedings of the 1st ACM SIGSPATIAL Workshop on Geospatial Humanities, Redondo Beach, CA, USA, 7–10 November 2017. [Google Scholar]
- Mitchell, L.; Frank, M.R.; Harris, K.D.; Dodds, P.S.; Danforth, C.M. The geography of happiness: Connecting twitter sentiment and expression, demographics, and objective characteristics of place. PLoS ONE 2013, 8, e64417. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fei, T.; Huang, Y.; Li, J.; Li, X.; Zhang, F.; Kang, Y.; Wu, G. Emotional habitat: Mapping the global geographic distribution of human emotion with physical environmental factors using a species distribution model. Int. J. Geogr. Inf. Sci. 2020, 1–23. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2010, 17, 43–57. [Google Scholar] [CrossRef]
- Gervasoni, L.; Bosch, M.; Fenet, S.; Sturm, P. A framework for evaluating urban land use mix from crowd-sourcing data. In Proceedings of the IEEE International Conference on Big Data, Boston, MA, USA, 11–14 December 2017. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.; Crawford, K. Critical questions for big data. Inf. Commun. Soc. 2012, 15, 662–679. [Google Scholar] [CrossRef]
- Li, L.; Goodchild, M.F.; Xu, B. Spatial, temporal, and socioeconomic patterns in the use of Twitter and Flickr. Cartogr. Geogr. Inf. Sci. 2013, 40, 61–77. [Google Scholar] [CrossRef]
- Sabatini, F.; Sarracino, F. Keeping up with the e-joneses: Do online social networks raise social comparisons? arXiv 2016, arXiv:1507.08863. [Google Scholar] [CrossRef] [Green Version]
- Mayol, A.; Pénard, T. Facebook use and individual well-being: Like me to make me happier! Rev. d’Économ. Ind. 2017, 158, 101–127. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Li, J.; Wu, G.; Fei, T. Quantifying the bias in place emotion extracted from photos on social networking sites: A case study on a university campus. Cities 2020, 102, 102719. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Y.; Zhang, F. Mining urban perceptions from social media data. J. Spat. Inf. Sci. 2020, 20, 51–55. [Google Scholar] [CrossRef]
- Kitchin, R.; Lauriault, T.P. Small data in the era of big data. Geojournal 2014, 80, 463–475. [Google Scholar] [CrossRef]
Data Source | Sample Size | Study Area | Results | Citation |
---|---|---|---|---|
Flickr photos | 2,416,191 faces | Global | Environmental factors such as natural landscape and water body have significant impact on tourists’ happiness. | Kang et al. [84] |
Flickr photos | 60,013 images | Greater Boston Area, the United States | Components of exposure to nature including green vegetation, proximity to water bodies, and undeveloped areas have a robust, positive effect on happiness. | Svoray et al. [82] |
self-report app records | 1,138,481 responses from 21,947 users | The United Kingdom | The relationships between environmental factors (land cover type and weather) and happiness are highly statistically significant. | MacKerron, Mourato [85] |
self-reports | 25 participants | Dundee, the United Kingdom | More green space in the surrounding environment can help people to adapt to stress. | Ward Thompson et al. [86] |
self-reports | 158 participants | NA | There is a positive, linear association between the density of urban street trees and self-reported stress recovery. | Jiang et al. [87] |
tweet text of Sina Weibo | 210 million microblog tweets | China | Air quality is associated with happiness. | Zheng et al. [80] |
self-reports | NA | Multiple countries | Air pollution plays a statistically significant role as a predictor in subjective well-being. | Welsch [88] |
self-reports | 564 households | Communities in Ann Arbor, Michigan, the United States | Having natural elements in the view from the window contributes to residents’ sense of well-being. | Kaplan [89] |
self-reports | 953 participants | Nine Swedish cities | Statistically significant relationships were found between the use of urban open green spaces and self-reported experiences of stress. | Grahn, Stigsdotter [90] |
self-reports | over 10,000 individual adults | The United Kingdom | The individuals are happier when living with greater amounts of urban green space. | White et al. [36] |
self-reports | 17,000 individuals | The Netherlands | Self-reported distress is greater in areas with lower levels of green space. | de Vries et al. [91] |
tweet text of Twitter | 34 metropolitan statistical areas | The United States | Climate factors like relative humidity and temperature contribute to local depression rates. | Yang et al. [92] |
self-reports | NA | The United States | There is a significant positive association between income and happiness within countries | Easterlin [13] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Fei, T.; Kwan, M.-P.; Kang, Y.; Li, J.; Li, Y.; Li, X.; Bian, M. GIS-Based Emotional Computing: A Review of Quantitative Approaches to Measure the Emotion Layer of Human–Environment Relationships. ISPRS Int. J. Geo-Inf. 2020, 9, 551. https://doi.org/10.3390/ijgi9090551
Huang Y, Fei T, Kwan M-P, Kang Y, Li J, Li Y, Li X, Bian M. GIS-Based Emotional Computing: A Review of Quantitative Approaches to Measure the Emotion Layer of Human–Environment Relationships. ISPRS International Journal of Geo-Information. 2020; 9(9):551. https://doi.org/10.3390/ijgi9090551
Chicago/Turabian StyleHuang, Yingjing, Teng Fei, Mei-Po Kwan, Yuhao Kang, Jun Li, Yizhuo Li, Xiang Li, and Meng Bian. 2020. "GIS-Based Emotional Computing: A Review of Quantitative Approaches to Measure the Emotion Layer of Human–Environment Relationships" ISPRS International Journal of Geo-Information 9, no. 9: 551. https://doi.org/10.3390/ijgi9090551
APA StyleHuang, Y., Fei, T., Kwan, M.-P., Kang, Y., Li, J., Li, Y., Li, X., & Bian, M. (2020). GIS-Based Emotional Computing: A Review of Quantitative Approaches to Measure the Emotion Layer of Human–Environment Relationships. ISPRS International Journal of Geo-Information, 9(9), 551. https://doi.org/10.3390/ijgi9090551