Graph Convolutional Neural Network for a Pharmacy Cross-Selling Recommender System
Abstract
:1. Introduction
1.1. Present Work
1.2. Related Work
1.2.1. Pharmaceutical Product Cross-Sales Recommendations
1.2.2. Graph Convolutional Neural Networks and Recommender Systems
1.2.3. Popularity Bias
2. Methodology
2.1. Data Representation in a Graph
Probability Based Re-Ranking
2.2. Model Architecture
2.3. Model Training
2.3.1. Positive Sampling
2.3.2. Negative Sampling
2.4. Recommendation
2.5. System Setup, Runtime, and Validation
3. Experiments
3.1. Popularity Bias in Sales Data
3.1.1. The Effect of Re-Ranking on Cross-Selling Statistics
3.1.2. The Effect of Re-Ranking on Positive Sampling
3.2. Recommendation Quality
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hamilton, W.L.; Ying, R.; Leskovec, J. Representation learning on graphs: Methods and applications. arXiv 2017, arXiv:1709.05584. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Monti, F.; Bronstein, M.; Bresson, X. Geometric matrix completion with recurrent multi-graph neural networks. In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3697–3707. [Google Scholar]
- van den Berg, R.; Kipf, T.N.; Welling, M. Graph convolutional matrix completion. In Proceedings of the KDD’18 Deep Learning Day, London, UK, 19–23 August 2018. [Google Scholar]
- Covington, P.; Adams, J.; Sargin, E. Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 191–198. [Google Scholar]
- Van den Oord, A.; Dieleman, S.; Schrauwen, B. Deep content based music recommendation. In Proceedings of the Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 2643–2651. [Google Scholar]
- Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018, 34, i457–i466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. Molecular graph convolutions: Moving beyond fingerprints. J. Comput. Aided Mol. Des. 2016, 30, 595–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himan Abdollahpouri, R.B.; Bamshad, M. Managing popularity bias in recommender systems with personalized re-ranking. In Proceedings of the Thirty-Second International Flairs Conference, Sarasota, FL, USA, 19–22 May 2019. [Google Scholar]
- Paul Rutter, E.W. Does evidence drive pharmacist over-the-counter product recommendations? J. Eval. Clin. Pract. 2013, 20, 1365–2753. [Google Scholar]
- Sarah, E.C.; Hans, W. Factors affecting pharmacists’ recommendation of complementary medicines—A qualitative pilot study of Australian pharmacists. BMC Complement. Altern. Med. 2012, 12, 183. [Google Scholar]
- Clayton, K.; Luxford, Y.; Colaci, J.; Hasan, M.; Miltiadou, R.; Novikova, D.; Vlahopoulos, D.; Stupans, I. Community pharmacists’ recommendations for natural products for stress in Melbourne, Australia: A simulated patient study. Pharm Pract. 2020, 18, 1660. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.; Aishwarya, K. Item based Hybrid Recommender System for newly marketed pharmaceutical drugs. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics, Kerala, India, 29–31 August 2013; pp. 2107–2111. [Google Scholar]
- Zhang, Y.; Zhang, D.; Hassan, M.M.; Alamri, A.; Peng, L. CADRE: Cloud-Assisted Drug Recommendation Service for Online Pharmacies. Mob. Netw. Appl. 2014, 20, 348–355. [Google Scholar] [CrossRef]
- Dai, H.; Dai, B.; Song, L. Discriminative embeddings of latent variable models for structured data. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2702–2711. [Google Scholar]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Bronstein, M.M.; Bruna, J.; LeCun, Y.; Szlam, A.; Vandergheynst, P.T. Geometric deep learning: Going beyond euclidean data. IEEE Signal Process. Mag. 2017, 34, 18–42. [Google Scholar] [CrossRef] [Green Version]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In Proceedings of the Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 3844–3852. [Google Scholar]
- Duvenaud, D.K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R.P. Convolutional networks on graphs for learning molecular fingerprints. In Proceedings of the Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2224–2232. [Google Scholar]
- You, J.; Ying, R.; Ren, X.; Hamilton, W.L.; Leskovec, J. Graphrnn: Generating realistic graphs with deep auto-regressive models. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018. [Google Scholar]
- Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 974–983. [Google Scholar]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1024–1034. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Seongjun, Y.; Minbyu, J.; Raehyun, K.; Jaewoo, K.; Hyunwoo, J.K. Graph Transformer Networks. In Proceedings of the 33rd Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar]
- Bellogín, A.; Castells, P.; Cantador, I. Statistical biases in Information Retrieval metrics for recommender systems. Inf. Retr. J. 2017, 20, 606–634. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.-J.; Tuzhilin, A. The long tail of recommender systems and how to leverage it. In Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland, 23–25 October 2008; pp. 11–18. [Google Scholar]
- Brynjolfsson, E.; Hu, Y.J.; Smith, M.D. From niches to riches: Anatomy of the long tail. IEEE Signal Process. Mag. 2006, 47, 67–71. [Google Scholar]
- Zhou, T.; Kuscsik, Z.; Liu, J.-G.; Medo, M.; Wakeling, J.R.; Zhang, Y.-C. Solving the apparent diversity-accuracy dilemma of recommender systems. Proc. Natl. Acad. Sci. USA 2010, 104, 511–4515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castells, P.; Vargas, S.; Wang, J. Rank and Relevance in Novelty and Diversity Metrics for Recommender Systems. In Proceedings of the ACM Conference on Recommender Systems, Chicago, IL, USA, 23–27 October 2011. [Google Scholar]
- Zhang, M.; Hurley, N. Avoiding monotony: Improving the diversity of recommendation lists. In Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland, 23–25 October 2008; pp. 123–130. [Google Scholar]
- Abdollahpouri, H.; Burke, R.; Mobasher, B. Controlling popularity bias in learning-to-rank recommendation. In Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, 27–31 August 2017; pp. 42–46. [Google Scholar]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Oh Song, H.; Xiang, Y.; Jegelka, S.; Savarese, S. Deep metric learning via lifted structured feature embedding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4004–4012. [Google Scholar]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep face recognition. In Proceedings of the British Machine Vision Conference (BMVC), Swansea, UK, 7–10 September 2015; pp. 41.1–41.12. [Google Scholar]
- Singhal, A. Modern information retrieval: A brief overview. IEEE Data Eng. Bull. 2017, 24, 35–43. [Google Scholar]
- Tan, P.-N.; Steinbach, M.; Kumar, V. Data mining cluster analysis: Basic concepts and algorithms. In Introduction to Data Mining; University of Minnesota: Minneapolis, MN, USA, 2013; pp. 487–533. [Google Scholar]
Rank | Recommended Product | Expert Feedback |
---|---|---|
1 | CETIRIZIN AL DIREKT | 2 |
2 | PANTOPRAZOL ABZ | 2 |
3 | OTRIVEN 0.1 | 2 |
4 | OMEPRADEX 20MG | 2 |
5 | LORANO AKUT | 2 |
6 | DEKRISTOL 400 IE | 2 |
7 | ASS AL 100 TAH | 0 |
8 | IBUPROFEN OPT 400MG | 2 |
9 | CALCIUM D3 RATIO | 2 |
10 | FENISTIL | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hell, F.; Taha, Y.; Hinz, G.; Heibei, S.; Müller, H.; Knoll, A. Graph Convolutional Neural Network for a Pharmacy Cross-Selling Recommender System. Information 2020, 11, 525. https://doi.org/10.3390/info11110525
Hell F, Taha Y, Hinz G, Heibei S, Müller H, Knoll A. Graph Convolutional Neural Network for a Pharmacy Cross-Selling Recommender System. Information. 2020; 11(11):525. https://doi.org/10.3390/info11110525
Chicago/Turabian StyleHell, Franz, Yasser Taha, Gereon Hinz, Sabine Heibei, Harald Müller, and Alois Knoll. 2020. "Graph Convolutional Neural Network for a Pharmacy Cross-Selling Recommender System" Information 11, no. 11: 525. https://doi.org/10.3390/info11110525
APA StyleHell, F., Taha, Y., Hinz, G., Heibei, S., Müller, H., & Knoll, A. (2020). Graph Convolutional Neural Network for a Pharmacy Cross-Selling Recommender System. Information, 11(11), 525. https://doi.org/10.3390/info11110525