Methods for Assessment and Monitoring of Light Pollution around Ecologically Sensitive Sites
Abstract
:Simple Summary
Abstract
1. Introduction
2. Current Methods
2.1. Remote Sensing of Upward Radiance
2.2. Single-Channel Radiometry
2.3. Calibrated All-Sky Imagery
3. Recent Developments
3.1. Drone-Based Aerial Imaging
3.2. Interpolated Single-Channel Detector Maps
3.3. Temporal Monitoring
4. Future Prospects
Funding
Acknowledgments
Conflicts of Interest
References
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.; Elvidge, C.; Baugh, K.; Portnov, B.; Rybnikova, N.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2. [Google Scholar] [CrossRef] [PubMed]
- Kyba, C.C.M.; Kuester, T.; Sánchez de Miguel, A.; Baugh, K.; Jechow, A.; Hölker, F.; Bennie, J.; Elvidge, C.D.; Gaston, K.J.; Guanter, L. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef]
- Boyce, P.R. The benefits of light at night. Build. Environ. 2019, 151, 356–367. [Google Scholar] [CrossRef]
- La Sorte, F.A.; Fink, D.; Buler, J.J.; Farnsworth, A.; Cabrera-Cruz, S.A. Seasonal associations with urban light pollution for nocturnally migrating bird populations. Glob. Chang. Biol. 2017, 23, 4609–4619. [Google Scholar] [CrossRef]
- Rodríguez, A.; Holmes, N.D.; Ryan, P.G.; Wilson, K.J.; Faulquier, L.; Murillo, Y.; Raine, A.F.; Penniman, J.F.; Neves, V.; Rodríguez, B.; et al. Seabird mortality induced by land-based artificial lights. Conserv. Biol. 2017, 31, 986–1001. [Google Scholar] [CrossRef] [PubMed]
- Van Doren, B.M.; Horton, K.G.; Dokter, A.M.; Klinck, H.; Elbin, S.B.; Farnsworth, A. High-intensity urban light installation dramatically alters nocturnal bird migration. Proc. Natl. Acad. Sci. USA 2017, 114, 11175–11180. [Google Scholar] [CrossRef] [PubMed]
- de Jong, M.; van den Eertwegh, L.; Beskers, R.E.; de Vries, P.P.; Spoelstra, K.; Visser, M.E. Timing of Avian Breeding in an Urbanised World. Ardea 2018, 106, 31–38. [Google Scholar] [CrossRef]
- Brüning, A.; Hölker, F.; Wolter, C. Artificial light at night: Implications for early life stages development in four temperate freshwater fish species. Aquat. Sci. 2011, 73, 143–152. [Google Scholar] [CrossRef]
- Becker, A.; Whitfield, A.K.; Cowley, P.D.; Järnegren, J.; Næsje, T.F. Potential effects of artificial light associated with anthropogenic infrastructure on the abundance and foraging behaviour of estuary-associated fishes. J. Appl. Ecol. 2013, 50, 43–50. [Google Scholar] [CrossRef]
- Brüning, A.; Kloas, W.; Preuer, T.; Hölker, F. Influence of artificially induced light pollution on the hormone system of two common fish species, perch and roach, in a rural habitat. Conserv. Physiol. 2018, 6, coy016. [Google Scholar] [CrossRef]
- Bengsen, A.J.; Leung, L.K.P.; Lapidge, S.J.; Gordon, I.J. Artificial illumination reduces bait-take by small rainforest mammals. Appl. Anim. Behav. Sci. 2010, 127, 66–72. [Google Scholar] [CrossRef]
- Robert, K.A.; Lesku, J.A.; Partecke, J.; Chambers, B. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc. R. Soc. B Biol. Sci. 2015, 282. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.; Palme, R.; Eccard, J.A. Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations. Environ. Pollut. 2018, 238, 844–851. [Google Scholar] [CrossRef]
- Lorne, J.K.; Salmon, M. Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean. Endanger. Species Res. 2007, 3, 23–30. [Google Scholar] [CrossRef]
- Kamrowski, R.; Limpus, C.; Moloney, J.; Hamann, M. Coastal light pollution and marine turtles: Assessing the magnitude of the problem. Endanger. Species Res. 2012, 19, 85–98. [Google Scholar] [CrossRef]
- Zheleva, M. The dark side of light. Light pollution kills leatherback turtle hatchlings. BioDiscovery 2012, 3, e8930. [Google Scholar] [CrossRef]
- Shimoda, M.; Honda, K.I. Insect reactions to light and its applications to pest management. Appl. Entomol. Zool. 2013, 48, 413–421. [Google Scholar] [CrossRef]
- Macgregor, C.J.; Evans, D.M.; Fox, R.; Pocock, M.J.O. The dark side of street lighting: Impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Chang. Biol. 2017, 23, 697–707. [Google Scholar] [CrossRef]
- Davies, T.W.; Bennie, J.; Cruse, D.; Blumgart, D.; Inger, R.; Gaston, K.J. Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages. Glob. Chang. Biol. 2017, 23, 2641–2648. [Google Scholar] [CrossRef]
- Underwood, C.N.; Davies, T.W.; Queirós, A.M. Artificial light at night alters trophic interactions of intertidal invertebrates. J. Anim. Ecol. 2017, 86, 781–789. [Google Scholar] [CrossRef]
- Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J. Artificial light at night causes top-down and bottom-up trophic effects on invertebrate populations. J. Appl. Ecol. 2018, 55, 2698–2706. [Google Scholar] [CrossRef]
- Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J. Ecological effects of artificial light at night on wild plants. J. Ecol. 2016, 104, 611–620. [Google Scholar] [CrossRef]
- Brelsford, C.C.; Robson, T.M. Blue light advances bud burst in branches of three temperate deciduous tree species under short-day conditions. Trees 2018, 32, 1157–1164. [Google Scholar] [CrossRef]
- Polak, T.; Korine, C.; Yair, S.; Holderied, M.W. Differential effects of artificial lighting on flight and foraging behaviour of two sympatric bat species in a desert. J. Zool. 2011, 285, 21–27. [Google Scholar] [CrossRef]
- Rubolini, D.; Maggini, I.; Ambrosini, R.; Imperio, S.; Paiva, V.H.; Gaibani, G.; Saino, N.; Cecere, J.G. The Effect of Moonlight on Scopoli’s Shearwater Calonectris diomedea Colony Attendance Patterns and Nocturnal Foraging: A Test of the Foraging Efficiency Hypothesis. Ethology 2015, 121, 284–299. [Google Scholar] [CrossRef]
- Farnworth, B.; Innes, J.; Waas, J.R. Converting Predation Cues into Conservation Tools: The Effect of Light on Mouse Foraging Behaviour. PLoS ONE 2016, 11, 1–17. [Google Scholar] [CrossRef]
- Silva, A.D.; Diez-Méndez, D.; Kempenaers, B. Effects of experimental night lighting on the daily timing of winter foraging in common European songbirds. J. Avian Biol. 2017, 48, 862–871. [Google Scholar] [CrossRef]
- Downs, N.; Beaton, V.; Guest, J.; Polanski, J.; Robinson, S.; Racey, P. The effects of illuminating the roost entrance on the emergence behaviour of Pipistrellus pygmaeus. Biol. Conserv. 2003, 111, 247–252. [Google Scholar] [CrossRef]
- Petrželková, K.J.; Downs, N.C.; Zukal, J.; Racey, P.A. A comparison between emergence and return activity in pipistrelle bats Pipistrellus pipistrellus and P. pygmaeus. Acta Chiropterologica 2006, 8, 381–390. [Google Scholar] [CrossRef]
- Stone, E.S.; Jones, G.; Harris, S. Street Lighting Disturbs Commuting Bats. Curr. Biol. 2009, 19, 1123–1127. [Google Scholar] [CrossRef]
- Kurvers, R.H.J.M.; Drägestein, J.; Hölker, F.; Jechow, A.; Krause, J.; Bierbach, D. Artificial Light at Night Affects Emergence from a Refuge and Space Use in Guppies. Sci. Rep. 2018, 8, 14131. [Google Scholar] [CrossRef]
- Vignoli, L.; Luiselli, L. Better in the dark: Two Mediterranean amphibians synchronize reproduction with moonlit nights. Web Ecol. 2013, 13, 1–11. [Google Scholar] [CrossRef]
- Agarwal, N.; Srivastava, S.; Malik, S.; Rani, S.; Kumar, V. Altered light conditions during spring: Effects on timing of migration and reproduction in migratory redheaded bunting (Emberiza bruniceps). Biol. Rhythm Res. 2015, 46, 647–657. [Google Scholar] [CrossRef]
- Le Tallec, T.; Théry, M.; Perret, M. Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution. J. Mammal. 2016, 97, 753–760. [Google Scholar] [CrossRef]
- Miller, M.W. Apparent Effects of Light Pollution on Singing Behavior of American Robins. Condor 2006, 108, 130–139. [Google Scholar] [CrossRef]
- Van Geffen, K.; Groot, A.; Van Grunsven, R.; Donners, M.; Berendse, F.; Veenendaal, E. Artificial night lighting disrupts sex pheromone in a noctuid moth. Ecol. Entomol. 2015, 40, 401–408. [Google Scholar] [CrossRef]
- Delhey, K.; Peters, A. Conservation implications of anthropogenic impacts on visual communication and camouflage. Conserv. Biol. 2016, 31, 30–39. [Google Scholar] [CrossRef]
- Davies, T.W.; Bennie, J.; Inger, R.; de Ibarra, N.H.; Gaston, K.J. Artificial light pollution: Are shifting spectral signatures changing the balance of species interactions? Glob. Chang. Biol. 2013, 19, 1417–1423. [Google Scholar] [CrossRef]
- Minnaar, C.; Boyles, J.G.; Minnaar, I.A.; Sole, C.L.; McKechnie, A.E. Stacking the odds: Light pollution may shift the balance in an ancient predator–prey arms race. J. Appl. Ecol. 2015, 52, 522–531. [Google Scholar] [CrossRef]
- Mammola, S.; Isaia, M.; Demonte, D.; Triolo, P.; Nervo, M. Artificial lighting triggers the presence of urban spiders and their webs on historical buildings. Landsc. Urban Plan. 2018, 180, 187–194. [Google Scholar] [CrossRef]
- Lyytimäki, J. Nature’s nocturnal services: Light pollution as a non-recognised challenge for ecosystem services research and management. Ecosyst. Serv. 2013, 3, e44–e48. [Google Scholar] [CrossRef]
- Knop, E.; Zoller, L.; Ryser, R.; Gerpe, C.; Hörler, M.; Fontaine, C. Artificial light at night as a new threat to pollination. Nature 2017, 548, 206–209. [Google Scholar] [CrossRef]
- Grubisic, M.; van Grunsven, R.; Kyba, C.; Manfrin, A.; Hölker, F. Insect declines and agroecosystems: Does light pollution matter? Ann. Appl. Biol. 2018, 173, 180–189. [Google Scholar] [CrossRef]
- Guetté, A.; Godet, L.; Juigner, M.; Robin, M. Worldwide increase in Artificial Light At Night around protected areas and within biodiversity hotspots. Biol. Conserv. 2018, 223, 97–103. [Google Scholar] [CrossRef]
- Koen, E.L.; Minnaar, C.; Roever, C.L.; Boyles, J.G. Emerging threat of the 21st century lightscape to global biodiversity. Glob. Chang. Biol. 2018, 24, 2315–2324. [Google Scholar] [CrossRef] [PubMed]
- Labuda, M.; Koch, R.; Nagyová, A. “Dark Sky Parks” as measure to support nature tourism in large protection areas—Case study in the Nature Park “Nossentiner/Schwinzer Heide”. Naturschutz Und Landschaftsplanung 2015, 47, 380–388. [Google Scholar]
- Labuda, M.; Pavlickova, K.; Števová, J. Dark Sky Parks—New impulse for nature tourism development in protected areas (National Park Muranska Planina, Slovakia). E-Rev. Tour. Res. 2016, 13, 536–549. [Google Scholar]
- Collison, F.M.; Poe, K. “Astronomical Tourism”: The Astronomy and Dark Sky Program at Bryce Canyon National Park. Tour. Manag. Perspect. 2013, 7, 1–15. [Google Scholar] [CrossRef]
- Rodríguez, A.; Holmberg, R.; Dann, P.; Chiaradia, A. Penguin colony attendance under artificial lights for ecotourism. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2018, 329, 457–464. [Google Scholar] [CrossRef]
- Wolf, I.D.; Croft, D.B. Observation techniques that minimize impacts on wildlife and maximize visitor satisfaction in night-time tours. Tour. Manag. Perspect. 2012, 4, 164–175. [Google Scholar] [CrossRef]
- International Dark-Sky Association International Dark Sky Places Program. Available online: https://www.darksky.org/our-work/conservation/idsp/ (accessed on 3 April 2019).
- Royal Astronomical Society of Canada Dark Sky Site Designations. Available online: https://www.rasc.ca/dark-sky-site-designations (accessed on 3 April 2019).
- Starlight Foundation Certification Program. Available online: https://fundacionstarlight.org/en/section/what-are-they/284.html (accessed on 3 April 2019).
- Barentine, J. Going for the Gold: Quantifying and Ranking Visual Night Sky Quality in International Dark Sky Places. Int. J. Sustain. Light. 2016, 18, 9–15. [Google Scholar] [CrossRef]
- Jechow, A.; Kyba, C.; Hölker, F. Beyond All-Sky: Assessing Ecological Light Pollution Using Multi-Spectral Full-Sphere Fisheye Lens Imaging. J. Imaging 2019, 5, 46. [Google Scholar] [CrossRef]
- Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kollath, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; et al. Measuring night sky brightness: Methods and challenges. J. Quant. Spectrosc. Radiat. Transf. 2018, 205, 278–290. [Google Scholar] [CrossRef]
- Sinnott, R.W. How can I find my naked-eye magnitude limit? Sky Telesc. 2004, 108, 130. [Google Scholar]
- Bortle, J.E. Introducing the Bortle Dark-Sky Scale. Sky Telesc. 2001, 101, 126. [Google Scholar]
- Kyba, C.C.M.; Wagner, J.M.; Kuechly, H.U.; Walker, C.E.; Elvidge, C.D.; Falchi, F.; Ruhtz, T.; Fischer, J.; Hölker, F. Citizen Science Provides Valuable Data for Monitoring Global Night Sky Luminance. Sci. Rep. 2013, 3, 1835. [Google Scholar] [CrossRef]
- Garstang, R.H. Model for Artificial Night-Sky Illumination. Publ. Astron. Soc. Pac. 1986, 98, 364. [Google Scholar] [CrossRef]
- Garstang, R.H. Night-sky brightness at observatories and sites. Publ. Astron. Soc. Pac. 1989, 101, 306–329. [Google Scholar] [CrossRef]
- Aubé, M.; Franchomme-Fosse, L.; Robert-Staehler, P.; Houle, V. Light pollution modelling and detection in a heterogeneous environment: Toward a night-time aerosol optical depth retreival method. Proc. SPIE 2005, 5890, 248–256. [Google Scholar] [CrossRef]
- Kerola, D.X. Modelling artificial night-sky brightness with a polarized multiple scattering radiative transfer computer code. Mon. Not. R. Astron. Soc. 2006, 365, 1295–1299. [Google Scholar] [CrossRef]
- Kocifaj, M. Light-pollution model for cloudy and cloudless night skies with ground-based light sources. Appl. Opt. 2007, 46, 3013–3022. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F. The propagation of light pollution in the atmosphere. Mon. Not. R. Astron. Soc. 2012, 427, 3337–3357. [Google Scholar] [CrossRef]
- Aubé, M. Physical behaviour of anthropogenic light propagation into the nocturnal environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140117. [Google Scholar] [CrossRef]
- Kocifaj, M. Multiple scattering contribution to the diffuse light of a night sky: A model which embraces all orders of scattering. J. Quant. Spectrosc. Radiat. Transf. 2018, 206, 260–272. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping City Lights With Nighttime Data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance Calibration of DMSP-OLS Low-Light Imaging Data of Human Settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Letu, H.; Hara, M.; Tana, G.; Nishio, F. A Saturated Light Correction Method for DMSP/OLS Nighttime Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 389–396. [Google Scholar] [CrossRef]
- Cao, X.; Hu, Y.; Zhu, X.; Shi, F.; Zhuo, L.; Chen, J. A simple self-adjusting model for correcting the blooming effects in DMSP-OLS nighttime light images. Remote Sens. Environ. 2019, 224, 401–411. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F.; Elvidge, C. The first World Atlas of the artificial night sky brightness. Mon. Not. R. Astron. Soc. 2001, 328, 689–707. [Google Scholar] [CrossRef]
- Falchi, F.; Cinzano, P.; Elvidge, C.D.; Baugh, K.E. The artificial night sky brightness mapped from DMSP satellite Operational Linescan System measurements. Mon. Not. R. Astron. Soc. 2000, 318, 641–657. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F.; Elvidge, C.D. Naked-eye star visibility and limiting magnitude mapped from DMSP-OLS satellite data. Mon. Not. R. Astron. Soc. 2001, 323, 34–46. [Google Scholar] [CrossRef]
- Cinzano, P.; Elvidge, C.D. Night sky brightness at sites from DMSP-OLS satellite measurements. Mon. Not. R. Astron. Soc. 2004, 353, 1107–1116. [Google Scholar] [CrossRef]
- Cao, C.; Xiong, J.; Blonski, S.; Liu, Q.; Uprety, S.; Shao, X.; Bai, Y.; Weng, F. Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. J. Geophys. Res. Atmos. 2013, 118, 11664–11678. [Google Scholar] [CrossRef]
- Cao, C.; Luccia, F.J.D.; Xiong, X.; Wolfe, R.; Weng, F. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1142–1156. [Google Scholar] [CrossRef]
- Cao, C.; Bai, Y. Quantitative Analysis of VIIRS DNB Nightlight Point Source for Light Power Estimation and Stability Monitoring. Remote Sens. 2014, 6, 11915–11935. [Google Scholar] [CrossRef]
- Duriscoe, D.M.; Anderson, S.J.; Luginbuhl, C.B.; Baugh, K.E. A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data. J. Quant. Spectrosc. Radiat. Transf. 2018, 214, 133–145. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Garz, S.; Kuechly, H.; De Miguel, A.S.; Zamorano, J.; Fischer, J.; Hölker, F. High-Resolution Imagery of Earth at Night: New Sources, Opportunities and Challenges. Remote Sens. 2015, 7, 1–23. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.R.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J.; et al. The Nightsat mission concept. Int. J. Remote Sens. 2007, 28, 2645–2670. [Google Scholar] [CrossRef]
- Walczak, K.; Gyuk, G.; Kruger, A.; Byers, E.; Huerta, S. NITESat: A High Resolution, Full-Color, Light Pollution Imaging Satellite Mission. Int. J. Sustain. Light. 2017, 19, 48–55. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Huang, L.; Wang, K.; Deng, J.; Jiang, R.; Ye, Z.; Gan, M. A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B. Remote Sens. Environ. 2018, 215, 300–312. [Google Scholar] [CrossRef]
- Sánchez de Miguel, A.; Kyba, C.C.; Aubé, M.; Zamorano, J.; Cardiel, N.; Tapia, C.; Bennie, J.; Gaston, K.J. Colour remote sensing of the impact of artificial light at night (I): The potential of the International Space Station and other DSLR-based platforms. Remote Sens. Environ. 2019, 224, 92–103. [Google Scholar] [CrossRef]
- Roach, F.E.; Gordon, J.L. The light of the night sky. Geophys. Astrophys. Monogr. 1973, 4, 125. [Google Scholar]
- Leinert, C.; Vaisanen, P.; Mattila, K.; Lehtinen, K. Measurements of sky brightness at the Calar Alto Observatory. Astron. Astrophys. Suppl. 1995, 112, 99. [Google Scholar]
- Leinert, C.; Bowyer, S.; Haikala, L.K.; Hanner, M.S.; Hauser, M.G.; Levasseur-Regourd, A.-C.; Mann, I.; Mattila, K.; Reach, W.T.; Schlosser, W.; et al. The 1997 reference of diffuse night sky brightness *. Astron. Astrophys. Suppl. Ser. 1998, 127, 1–99. [Google Scholar] [CrossRef]
- Patat, F. UBVRI night sky brightness during sunspot maximum at ESO-Paranal. Astron. Astrophys. 2003, 400, 1183–1198. [Google Scholar] [CrossRef]
- Duffield, W.G. The luminosity of the night sky observed with a Rayleigh photometer at the Commonwealth Solar Observatory during the years 1926 and 1927. Mem. Mt. Stromlo Obs. 1928, 1, 1–29. [Google Scholar]
- Pike, R.; Berry, R. A Bright Future for the Night Sky. Sky Telesc. 1978, 55, 126–129. [Google Scholar]
- Upgren, A.R. Night Sky Brightness from Visual Observations II. A Visual Photometer. J. Am. Assoc. Var. Star Obs. (JAAVSO) 1991, 20, 244–247. [Google Scholar]
- Bessell, M.S. UBVRI passbands. Publ. Astron. Soc. Pac. 1990, 102, 1181–1199. [Google Scholar] [CrossRef]
- Cinzano, P. Night Sky Photometry with Sky Quality Meter; Technical Report 9; Istituto di scienza e tecnologia dell’inquinamento luminoso: Thiene, Italy, 2007. [Google Scholar]
- Cinzano, P. Report on Sky Quality Meter, version L; Technical Report; Istituto di scienza e tecnologia dell’inquinamento luminoso: Thiene, Italy, 2007. [Google Scholar]
- Schnitt, S.; Ruhtz, T.; Fischer, J.; Hölker, F.; Kyba, C.C. Temperature Stability of the Sky Quality Meter. Sensors 2013, 13, 12166–12174. [Google Scholar] [CrossRef]
- Den Outer, P.; Lolkema, D.; Haaima, M.; Van der Hoff, R.; Spoelstra, H.; Schmidt, W. Stability of the Nine Sky Quality Meters in the Dutch Night Sky Brightness Monitoring Network. Sensors 2015, 15, 9466–9480. [Google Scholar] [CrossRef] [PubMed]
- Den Outer, P.; Lolkema, D.; Haaima, M.; Hoff, R.V.D.; Spoelstra, H.; Schmidt, W. Intercomparisons of Nine Sky Brightness Detectors. Sensors 2011, 11, 9603–9612. [Google Scholar] [CrossRef] [PubMed]
- Pun, C.S.J.; So, C.W. Night-sky brightness monitoring in Hong Kong. Environ. Monit. Assess. 2012, 184, 2537–2557. [Google Scholar] [CrossRef] [PubMed]
- Pun, C.S.J.; So, C.W.; Leung, W.Y.; Wong, C.F. Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 90–108. [Google Scholar] [CrossRef]
- Bará, S. Anthropogenic disruption of the night sky darkness in urban and rural areas. R. Soc. Open Sci. 2016, 3, 160541. [Google Scholar] [CrossRef]
- Posch, T.; Binder, F.; Puschnig, J. Systematic measurements of the night sky brightness at 26 locations in Eastern Austria. J. Quant. Spectrosc. Radiat. Transf. 2018, 211, 144–165. [Google Scholar] [CrossRef]
- Zamorano Calvo, J.; Sánchez de Miguel, A.; Nievas Rosillo, M.; Tapia Ayuga, C. NixNox Procedure to Build Night Sky Brightness Maps from SQM Photometers Observations; ePrints Complutense 26982; Universidad Complutense de Madrid: Madrid, Spain, 2014. [Google Scholar]
- Sánchez de Miguel, A.; Aubé, M.; Zamorano, J.; Kocifaj, M.; Roby, J.; Tapia, C. Sky Quality Meter measurements in a colour-changing world. Mon. Not. R. Astron. Soc. 2017, 467, 2966–2979. [Google Scholar] [CrossRef]
- Rosa Infantes, D. The Road Runner System. IV International Symposium for Dark Sky Parks. 2011. Available online: http://darkskyparks.splet.arnes.si/files/2011/09/RoadRunner.pdf (accessed on 3 April 2019).
- Duriscoe, D.M. Photometric indicators of visual night sky quality derived from all-sky brightness maps. J. Quant. Spectrosc. Radiat. Transf. 2016, 181, 33–45. [Google Scholar] [CrossRef]
- Duriscoe, D.M. Measuring Anthropogenic Sky Glow Using a Natural Sky Brightness Model. Publ. Astron. Soc. Pac. 2013, 125, 1370–1382. [Google Scholar] [CrossRef]
- Cinzano, P.; Falchi, F. A portable wide-field instrument for mapping night sky brightness automatically. Mem. Della Soc. Astron. Ital. 2003, 74, 458. [Google Scholar]
- Cinzano, P. A portable spectrophotometer for light pollution measurements. Mem. Della Soc. Astron. Ital. Suppl. 2004, 5, 395. [Google Scholar]
- Duriscoe, D.M.; Luginbuhl, C.B.; Moore, C.A. Measuring Night-Sky Brightness with a Wide-Field CCD Camera. Publ. Astron. Soc. Pac. 2007, 119, 192–213. [Google Scholar] [CrossRef]
- Aceituno, J.; Sánchez, S.F.; Aceituno, F.J.; Galadí-Enríquez, D.; Negro, J.J.; Soriguer, R.C.; Gomez, G.S. An All-Sky Transmission Monitor: ASTMON. Publ. Astron. Soc. Pac. 2011, 123, 1076–1086. [Google Scholar] [CrossRef]
- Kolláth, Z. Measuring and modelling light pollution at the Zselic Starry Sky Park. J. Phys. Conf. Ser. 2010, 218, 012001. [Google Scholar] [CrossRef]
- Jechow, A.; Hölker, F.; Kyba, C.C.M. Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas. Sci. Rep. 2019, 9, 1391. [Google Scholar] [CrossRef]
- Jechow, A.; Ribas, S.J.; Domingo, R.C.; Hölker, F.; Kolláth, Z.; Kyba, C.C. Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens. J. Quant. Spectrosc. Radiat. Transf. 2018, 209, 212–223. [Google Scholar] [CrossRef]
- Jechow, A. Observing the Impact of WWF Earth Hour on Urban Light Pollution: A Case Study in Berlin 2018 Using Differential Photometry. Sustainability 2019, 11, 750. [Google Scholar] [CrossRef]
- Jechow, A.; Hölker, F.; Kolláth, Z.; Gessner, M.O.; Kyba, C.C. Evaluating the summer night sky brightness at a research field site on Lake Stechlin in northeastern Germany. J. Quant. Spectrosc. Radiat. Transf. 2016, 181, 24–32. [Google Scholar] [CrossRef]
- Jechow, A.; Kolláth, Z.; Lerner, A.; Hänel, A.; Shashar, N.; Hölker, F.; Kyba, C.C. Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat—A Proof of Concept. Int. J. Sustain. Light. 2017, 19, 15–25. [Google Scholar] [CrossRef]
- Crumey, A. Human contrast threshold and astronomical visibility. Mon. Not. R. Astron. Soc. 2014, 442, 2600–2619. [Google Scholar] [CrossRef]
- Biggs, J.D.; Fouché, T.; Bilki, F.; Zadnik, M.G. Measuring and mapping the night sky brightness of Perth, Western Australia. Mon. Not. R. Astron. Soc. 2012, 421, 1450–1464. [Google Scholar] [CrossRef]
- Bará, S. Characterizing the zenithal night sky brightness in large territories: How many samples per square kilometre are needed? Mon. Not. R. Astron. Soc. 2017, 473, 4164–4173. [Google Scholar] [CrossRef]
- Dobler, G.; Ghandehari, M.; Koonin, S.; Sharma, M. A Hyperspectral Survey of New York City Lighting Technology. Sensors 2016, 16, 2047. [Google Scholar] [CrossRef]
- Alamús, R.; Bará, S.; Corbera, J.; Escofet, J.; Palà, V.; Pipia, L.; Tardà, A. Ground-based hyperspectral analysis of the urban nightscape. ISPRS J. Photogramm. Remote Sens. 2017, 124, 16–26. [Google Scholar] [CrossRef]
- Bouroussis, C.A.; Topalis, F.V. The effect of the spectral response of measurement instruments in the assessment of night sky brightness. J. Quant. Spectrosc. Radiat. Transf. 2018, 216, 56–69. [Google Scholar] [CrossRef]
- van Grunsven, R.H.A.; Donners, M.; Boekee, K.; Tichelaar, I.; van Geffen, K.G.; Groenendijk, D.; Berendse, F.; Veenendaal, E.M. Spectral composition of light sources and insect phototaxis, with an evaluation of existing spectral response models. J. Insect Conserv. 2014, 18, 225–231. [Google Scholar] [CrossRef]
- Mège, P.; Ödeen, A.; Théry, M.; Picard, D.; Secondi, J. Partial Opsin Sequences Suggest UV-Sensitive Vision is Widespread in Caudata. Evol. Biol. 2015, 43, 109–118. [Google Scholar] [CrossRef]
- Mohar, A. Sky Quality Camera as a Quick and Reliable Tool for Light Pollution Monitoring. In Proceedings of the International Conference on Light Pollution Theory, Modelling and Measurements, Jouvance, QC, Canada, 26–28 May 2015; p. 47. Available online: https://w1.cegepsherbrooke.qc.ca/~aubema/LPTMM/uploads/Site/Abstract-booklet-lptmm-2015.pdf (accessed on 3 April 2019).
- Kolláth, Z.; Dömény, A. Night sky quality monitoring in existing and planned dark sky parks by digital cameras. Int. J. Sustain. Light. 2017, 19, 61–68. [Google Scholar] [CrossRef]
- Pascual, S.; Nievas, M.; Zamorano, J.; Contreras, J.L. PyASB, All Sky Brightness Pipeline. In Proceedings of the Astronomical Data Analysis Software and Systems XXV, Sydney, Australia, 25–29 October 2015; Astronomical Society of the Pacific: San Francisco, CA, USA, 2017; Volume 512, pp. 407–410. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barentine, J.C. Methods for Assessment and Monitoring of Light Pollution around Ecologically Sensitive Sites. J. Imaging 2019, 5, 54. https://doi.org/10.3390/jimaging5050054
Barentine JC. Methods for Assessment and Monitoring of Light Pollution around Ecologically Sensitive Sites. Journal of Imaging. 2019; 5(5):54. https://doi.org/10.3390/jimaging5050054
Chicago/Turabian StyleBarentine, John C. 2019. "Methods for Assessment and Monitoring of Light Pollution around Ecologically Sensitive Sites" Journal of Imaging 5, no. 5: 54. https://doi.org/10.3390/jimaging5050054
APA StyleBarentine, J. C. (2019). Methods for Assessment and Monitoring of Light Pollution around Ecologically Sensitive Sites. Journal of Imaging, 5(5), 54. https://doi.org/10.3390/jimaging5050054