Genetic Relationship between Mississippi Valley-Type Pb–Zn Mineralization and Hydrocarbon Accumulation in the Wusihe Deposits, Southwestern Margin of the Sichuan Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Ore Deposit Geology
3.1. Ore-Bearing Strata
3.2. Spatial Relationship between Paleo-Oil/Gas Reservoirs and Pb–Zn Deposit
3.3. Ore Bodies
3.4. Stages of Mineralization
4. Samples and Analytical Method
5. Results
5.1. Characteristics of Biomarkers in Source Rock and Reservoir Bitumen
5.2. Metal Minerals in Source Rocks
5.3. Metal Sulfide Minerals in Bitumen
5.4. Bitumen Inclusions in Sulfide Minerals
5.5. Bitumen Inclusions in Quartz
5.6. Sulfur Isotopic Characteristics
6. Discussion
6.1. Oil Source of Paleo-Oil and Paleo-Gas Reservoirs
- (1)
- Sedimentary environment
- (2)
- Parent source of organic matter
- (3)
- Maturity of organic matter
6.2. Formation and Evolution Process of the Paleo-Oil and Paleo-Gas Reservoirs
6.3. Times of Mineralization and Hydrocarbon Accumulation
6.4. Sources of Ore-Forming Metal Elements
6.5. Sources of Ore-Forming Sulfur
6.6. Relationship between Mineralization and Accumulation
7. Conclusions
- (1)
- The MVT Pb–Zn deposit and paleo-oil/gas reservoirs in the dolomite of the Maidiping Member are distributed along the paleokarst interface between the Maidiping Member and the Qiongzhusi Formation; they overlap spatially, and the Pb–Zn ore bodies mainly occupy the upper part of the paleo-oil/gas reservoirs. Both the Pb–Zn ore and sphalerite are rich in thermally cracked bitumen with µm-sized crystals of galena and sphalerite, of which contents of lead and zinc are higher than those required for Pb–Zn mineralization.
- (2)
- The oil source of the paleo-oil reservoirs from the Cambrian Qiongzhusi Formation not only provided oil sources for paleo-oil reservoirs but also provided ore-forming metal elements for Pb–Zn mineralization.
- (3)
- The oil may act as an ore-transporting agent for metallogenic metal elements. Liquid oil with abundant ore-forming metals accumulated to form paleo-oil reservoirs with mature organic matter in source rocks. As paleo-oil reservoirs were buried, the oil underwent in situ thermal cracking to form overpressure paleo-gas reservoirs and a large amount of bitumen. The generation time of the paleo-gas reservoirs is similar to the metallogenic time.
- (4)
- The metal elements that were decoupled from organic matter and H2S that formed by TSR and minor decomposition of the organic matter dissolved in oilfield brine around the gas–water interface to form the ore fluid during oil thermal cracking and paleo-gas reservoir development.
- (5)
- The large-scale Pb–Zn mineralization is mainly related to the destruction of overpressured paleo-gas reservoirs; the sudden pressure relief caused the ore fluid around the gas–water interface to migrate upward into the paleo-gas reservoirs and induced extensive metal sulfide precipitation in the ore fluid, resulting in special spatiotemporal associated or paragenetic relations of the galena, sphalerite, and bitumen.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gize, A.P.; Barnes, H.L. The organic geochemistry of two Mississippi Valley-Type Lead-Zinc deposits. Econ. Geol. 1987, 82, 457–470. [Google Scholar] [CrossRef]
- Tompkins, L.A.; Rayner, M.J.; Groves, D.I.; Roche, M.T. Evaporites; in situ sulfur source for rhythmically banded ore in the Cadjebut Mississippi Valley-Type Zn–Pb deposit, Western Australia. Econ. Geol. 1994, 89, 467–492. [Google Scholar] [CrossRef]
- Kesler, S.E.; Jones, H.D.; Furman, F.C.; Sassen, R.; Anderson, W.H.; Kyle, J.R. Role of crude oil in the genesis of Mississippi Valley-Type deposits: Evidence from the Cincinnati Arch. Geology 1994, 22, 609. [Google Scholar] [CrossRef]
- Fallara, F.; Savard, M.M. A Structural, petrographic, and geochemical study of the Jubilee Zn–Pb deposit, Nova Scotia, Canada, and a new metallogenic model. Econ. Geol. 1998, 93, 757–778. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, C.Q.; Mao, J.W.; Ouyang, H.G.; Sun, J. The genetic relationship between hydrocarbon systems and Mississippi Valley-Type Zn–Pb deposits along the SW margin of Sichuan Basin, China. Int. Geol. Rev. 2013, 55, 941–957. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Wu, Y.; Hou, L.; Mao, J.W. Geodynamic setting of mineralization of Mississippi Valley-Type deposits in world-class Sichuan–Yunnan–Guizhou Zn–Pb triangle, Southwest China: Implications from Age-Dating studies in the past decade and the Sm–Nd age of Jinshachang deposit. J. Asian Earth Sci. 2015, 103, 103–114. [Google Scholar] [CrossRef]
- Wang, G.Z.; Huang, Z.; Zhao, F.F.; Li, N.; Fu, Y.Z. The relationship between hydrocarbon accumulation and Mississippi Valley-type Pb-Zn mineralization of the Mayuan metallogenic belt, the Northern Yangtze Block, SW China: Evidence from ore geology and Rb-Sr isotopic dating. Resour. Geol. 2020, 70, 188–203. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, G.Z.; Li, N.; Fu, Y.Z.; Lei, Q.; Mao, X.L. Genetic link between Mississippi Valley-Type (MVT) Zn–Pb mineralization and hydrocarbon accumulation in the Nanmushu, Northern Margin of Sichuan Basin, SW China. Geochemistry 2021, 81, 125805. [Google Scholar] [CrossRef]
- Marikos, M.A.; Laudon, R.C.; Leventhal, J.S. Solid insoluble bitumen in the magmont west orebody, Southeast Missouri. Econ. Geol. 1986, 81, 1983–1988. [Google Scholar] [CrossRef]
- Arne, D.C.; Curtis, L.W.; Kissin, S.A. Internal zonation in a carbonate-hosted Zn–Pb-Ag deposit, Nanisivik, Baffin Island, Canada. Econ. Geol. 1991, 86, 699–717. [Google Scholar] [CrossRef]
- Macqueen, R.W.; Powell, T.G. Organic geochemistry of the Pine Point Lead-Zinc ore field and region, Northwest Territories, Canada. Econ. Geol. 1983, 78, 1–25. [Google Scholar] [CrossRef]
- Selby, D.; Creaser, R.; Dewing, K.; Fowler, M. Evaluation of bitumen as a Re–Os geochronometer for hydrocarbon maturation and migration: A test case from the Polaris MVT deposit, Canada. Earth Planet. Sci. Lett. 2005, 235, 1–15. [Google Scholar] [CrossRef]
- Parnell, J. Hydrocarbon minerals in the Midland Valley of Scotland with particular reference to the oil-shale group. Proc. Geol. Assoc. 1984, 95, 275–285. [Google Scholar] [CrossRef]
- Xue, C.J.; Gao, Y.B.; Zeng, R.; Chi, G.X.; Qing, H.R. Organic Petrography and Geochemistry of the Giant Jinding Deposit, Lanping Basin, Northwestern Yunnan, China. Acta Petrol. Sin. 2007, 23, 2889–2900. Available online: http://www.ysxb.ac.cn/article/id/aps_200701119 (accessed on 20 October 2022). (In Chinese with English Abstract).
- Hanor, J.S. The sedimentary genesis of hydrothermal fluids. In Geochemistry of Hydrothermal Deposits, 2nd ed.; Barnes, H.L., Ed.; John Wiley and Sons: New York, NY, USA, 1979; pp. 137–168. ISBN 0471050563. [Google Scholar]
- Beales, F.W. Precipitation mechanisms for Mississippi Valley-Type ore deposits. Econ. Geol. 1975, 70, 943–948. [Google Scholar] [CrossRef]
- Powell, T.G.; MacQueen, R.W. Precipitation of sulfide ores and organic matter: Sulfate reactions at Pine Point, Canada. Science 1984, 224, 63–66. [Google Scholar] [CrossRef]
- Leach, D.L.; Sangste, D.F.; Kelley, K.D.; Large, R.R.; Garven, G.; Allen, C.R.; Gatzmer, J.; Wallters, S. Sediment-hosted Lead-Zink deposit: A global perspective. Econ. Geol. 2005, 105, 561–607. [Google Scholar]
- Wilson, N.S.F.; Zentilli, M. Association of pyrobitumen with copper mineralization from the Uchumi and Talcuna districts, Central Chile. Int. J. Coal Geol. 2006, 65, 158–169. [Google Scholar] [CrossRef]
- Tu, G.C. Geochemistry of Stratigraphic Deposits in China; Science Press: Beijing, China, 1988; Volume 3, ISBN 7-03-000486-8. (In Chinese) [Google Scholar]
- Shi, J.X.; Yu, X.Y.; Wang, H.Y. The role of ancient oil reservoirs, Bitumens and bitumen inclusions in metallogenetic research. Acta Mineral. Sin. 1995, 117–122, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Parnell, J. Metal enrichments in solid bitumens: A review. Miner. Depos. 1988, 23, 191–199. [Google Scholar] [CrossRef]
- Shi, J.X.; Wang, H.Y.; Lin, Q. The relationship between the formation of gold, antimony and mercury low temperature deposits and organic matter. In Low Temperature Geochemistry; Tu, G.C., Ed.; Science Press: Beijing, China, 1998; pp. 53–76. (In Chinese) [Google Scholar]
- Gu, X.X.; Zhang, Y.M.; Li, B.H.; Xue, C.J.; Dong, S.Y.; Fu, Z.H.; Cheng, W.B.; Liu, L.; Wu, C.Y. The Coupling Relationship between Metallization and Hydrocarbon Accumulation in Sedimentary Basins. Earth Sci. Front. 2010, 17, 83–105. Available online: https://www.earthsciencefrontiers.net.cn/EN/Y2010/V17/I2/83 (accessed on 31 October 2022). (In Chinese with English Abstract).
- Sverjensky, D.A. Oil field brines as ore-forming solutions. Econ. Geol. 1984, 79, 23–37. [Google Scholar] [CrossRef]
- Peabody, C.E.; Einaudi, M.T. Origin of petroleum and mercury in the Culver-Baer Cinnabar deposit, Mayacmas District, California. Econ. Geol. 1992, 87, 1078–1103. [Google Scholar] [CrossRef]
- Manning, D.A.C.; Gize, A.P. The role of organic matter in ore transport processes. In Organic Gechemistry: Principles and Application; Engel, M.H., Macko, S.A., Eds.; Plenum Press: New York, NY, USA, 1993; pp. 547–563. ISBN 978-1-4613-6252-4. [Google Scholar]
- Zhuang, H.P.; Lu, J.L.; Wen, H.J.; Mao, H.H. Organic matter in hydrothermal ore-forming fluid. Earth Environ. 1997, 1, 85–91. [Google Scholar]
- Xiong, S.F.; Yao, S.Z.; Gong, Y.J.; Tan, M.T.; Zeng, G.P.; Wang, W. Ore-forming fluid and thermochemical sulfate reduction in the Wusihe Lead-Zinc deposit, Sichuan Province, China. Earth Sci. China Univ. Geosci. 2016, 41, 105. [Google Scholar] [CrossRef]
- Zhang, H.J.; Fan, H.F.; Xiao, C.Y.; Wen, H.J.; Ye, L.; Huang, Z.L.; Zhou, J.X.; Guo, Q.J. The mixing of multi-source fluids in the Wusihe Zn–Pb ore deposit in Sichuan Province, Southwestern China. Acta Geochim. 2019, 38, 642–653. [Google Scholar] [CrossRef]
- Xiong, S.F.; Gong, Y.J.; Jiang, S.Y.; Zhang, X.J.; Li, Q.; Zeng, G.P. Ore genesis of the Wusihe carbonate-hosted Zn–Pb deposit in the Dadu River valley district, Yangtze Block, SW China: Evidence from ore geology, S-Pb Isotopes, and sphalerite Rb-Sr Dating. Miner. Depos. 2018, 53, 967–979. [Google Scholar] [CrossRef]
- Li, H.M.; Zhang, C.Q. The genetic relationship between the H2S-bearing gas in Sichuan Basin and Lead-Zinc-Copper deposits around the basin. Geol. Rev. 2012, 58, 495–510, (In Chinese with English Abstract). [Google Scholar]
- Luo, K.; Zhou, J.X.; Huang, Z.L.; Caulfield, J.; Zhao, J.X.; Feng, Y.X.; Ouyang, H.G. New insights into the evolution of Mississippi Valley-Type hydrothermal system: A case study of the Wusihe Pb–Zn deposit, South China, Using quartz in-Situ trace elements and sulfides in Situ S-Pb Isotopes. Am. Mineral. 2020, 105, 35–51. [Google Scholar] [CrossRef]
- Wei, C.; Ye, L.; Li, Z.L.; Hu, Y.S.; Huang, Z.L.; Liu, Y.P.; Wang, H.Y. Metal sources and ore genesis of the Wusihe Pb–Zn deposit in Sichuan, China: New evidence from in-situ S and Pb Isotopes. Acta Petrol. Sin. 2020, 36, 3783–3796, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Tan, T.; Wang, G.Z.; Peng, H.L.; Huang, Z.; Zuo, L. Origin of ore-forming metal elements of MVT Pb–Zn deposit in Dengying formation, Sichuan Basin. Mineral. Petrol. 2021, 41, 68–79, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Hu, R.Z.; Fu, S.L.; Huang, Y.; Zhou, M.F.; Fu, S.H.; Zhao, C.H.; Wang, Y.J.; Bi, X.W.; Xiao, J.F. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. J. Asian Earth Sci. 2017, 137, 9–34. [Google Scholar] [CrossRef]
- Zhao, X.F.; Zhou, M.F.; Li, J.W.; Sun, M.; Gao, J.F.; Sun, W.H.; Yang, J.H. Late paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block. Precambrian Res. 2010, 182, 57–69. [Google Scholar] [CrossRef]
- Zhu, L.M.; Yuan, H.H.; Luan, S.W. A study of isotopic geochemical features and minerogenetic materal source of the Disu and Daliangzi Pb–Zn deposits, SiChuan. Mineral. Petrol. 1995, 15, 72–79, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, C.Q.; Mao, J.W.; Wu, S.P.; Li, H.M.; Liu, F.; Guo, B.J.; Gao, D.R. Distribution, characteristics and genesis of Mississippi Valley -Type Lead-Zinc deposits in Sichun-Yunnan-Guizhou area. Miner. Depos. 2005, 24, 336–348, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, H.M.; Chen, Y.C.; Wang, D.H.; Li, H.Q. Geochemistry and mineralization age of the Mayuan Zinc deposit, Nanzheng, Southern Shaanxi, China. Geol. Bull. China 2007, 26, 546–552, (In Chinese with English Abstract). [Google Scholar]
- Liu, S.G.; Qin, C.; Jansa, L.; Sun, W.; Wang, G.Z.; Xu, G.S.; Yuan, H.F.; Zhang, C.J.; Zhang, Z.J.; Deng, B.; et al. Transformation of oil pools into gas pools as results of multiple tectonic events in Upper Sinian (Upper Neoproterozoic), deep part of Sichuan Basin, China. Energy Explor. Exploit. 2011, 29, 679–698. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Wei, G.Q.; Xie, W.R.; Jin, H.; Zeng, F.Y.; Su, N.; Sun, A.; Ma, S.Y.; Shen, J.H.; Wu, S.J. Hydrocarbon accumulation and exploration prospect of Mound-Shoal complexes on the platform margin of the fourth member of Sinian Dengying formation in the east of Mianzhu-Changning intracratonic rift, Sichuan Basin, SW China. Pet. Explor. Dev. 2020, 47, 1262–1274. [Google Scholar] [CrossRef]
- Shi, C.H.; Cao, J.; Selby, D.; Tan, X.C.; Luo, B.; Hu, W.X. Hydrocarbon evolution of the over-mature Sinian Dengying reservoir of the Neoproterozoic Sichuan Basin, China: Insights from Re–Os geochronology. Mar. Pet. Geol. 2020, 122, 104726. [Google Scholar] [CrossRef]
- Zheng, D.Y.; Pang, X.Q.; Luo, B.; Chen, D.X.; Pang, B.; Li, H.Y.; Yu, R.; Guo, F.X.; Li, W. Geochemical characteristics, genetic types, and source of natural gas in the Sinian Dengying formation, Sichuan Basin, China. J. Pet. Sci. Eng. 2021, 199, 108341. [Google Scholar] [CrossRef]
- Wang, G.Z.; Liu, S.G.; Chen, C.H.; Wang, D.; Sun, W. The Genetic Relationship between MVT Pb–Zn Deposits and Paleo-Oil/Gas Reservoirs at Heba, Southeastern Sichuan Basin. Earth Sci. Front. 2013, 20, 107–116. Available online: https://www.researchgate.net/profile/Shugen-Liu/publication/285527458_The_genetic_relationship_between_MVT_Pb-Zn_deposits_and_paleo-oilgas_reservoirs_at_Heba_Southeastern_Sichuan_Basin/links/597fc7280f7e9b8802ed2266/The-genetic-relationship-between-MVT-Pb-Zn-deposits-and-paleo-oil-gas-reservoirs-at-Heba-Southeastern-Sichuan-Basin.pdf (accessed on 13 October 2022). (In Chinese with English Abstract).
- Gao, P.; Di Liu, G.; Lash, G.G.; Li, B.Y.; Yan, D.T.; Chen, C. Occurrences and origin of reservoir solid bitumen in Sinian Dengying formation dolomites of the Sichuan Basin, SW China. Int. J. Coal Geol. 2018, 200, 135–152. [Google Scholar] [CrossRef]
- Liu, S.G.; Li, Z.Q.; Deng, B.; Sun, W.; Li, Z.W.; Ding, Y.; Song, J.M.; Wu, J. Occurrence morphology of bitumen in Dengying formation deep and Ultra-Deep carbonate reservoirs of the Sichuan Basin and Its indicating significance to oil and gas reservoirs. Nat. Gas Ind. 2021, 41, 102–112, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wu, D.D.; Wu, N.Y.; Ye, Y.; Zhang, P.P.; Chen, X.G. Geochemical characteristics of hydrocarbon compounds in sediments of the Eastern South China Sea. Acta Petrol. Sin. 2008, 29, 517–526, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Moldowan, J.M.; Seifert, W.K.; Gallegos, E.J. Relationship between petroleum composition and depositional environment of petroleum source rocks. Am. Assoc. Pet. Geol. Bull. 1985, 69, 1255–1268. [Google Scholar] [CrossRef]
- Blumer, M.; Guillard, R.R.L.; Chase, T. Hydrocarbons of marine phytoplankton. Mar. Biol. 1971, 8, 183–189. [Google Scholar] [CrossRef]
- Mackenzie, F.T.; Bischoff, W.D.; Bishop, F.C.; Loijens, M.; Schoonmaker, J.; Wollast, R. Magnesian calcites; low-temperature occurrence, solubility and solid-solution behavior. Rev. Mineral. Geochem. 1983, 11, 97–144. [Google Scholar]
- Huang, W. Geochemistry on Pyrobitumen and Source Rocks in Deep Layer of Leshan-Longnvsi Area. Master’s Thesis, China University of Petroleum, Beijing, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Peters, K.E.; Moldowan, J.M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments; Prentice Hall: Hoboken, NJ, USA, 1993; ISBN 0130867527. [Google Scholar]
- Haven, H.L.T.; Leeuw, J.W.D.; Peakman, T.M.; Maxwell, J.R. Anomalies in steroid and hopanoid maturity indices. Geochim. Cosmochim. Acta 1986, 50, 853–855. [Google Scholar] [CrossRef]
- Wolff, G.A.; Lamb, N.A.; Maxwell, J.R. The origin and fate of 4-methyl steroid hydrocarbons. I. diagenesis of 4-methyl sterenes. Geochim. Cosmochim. Acta 1986, 50, 335–342. [Google Scholar] [CrossRef]
- Shen, C.B.; Ge, X.; Bai, X.J. Re-Os Geochronology Constraints on the Neoproterozoic-Cambrian Hydrocarbon Accumulation in the Sichuan Basin. Earth Sci. 2019, 44, 713–726. Available online: http://www.earth-science.net/article/doi/10.3799/dqkx.2018.383 (accessed on 3 May 2022). (In Chinese with English Abstract).
- Ge, X.; Shen, C.B.; Selby, D.; Wang, J.; Ma, L.B.; Ruan, X.Y.; Hu, S.Z.; Mei, L.F. Petroleum-generation timing and source in the Northern Longmen Shan Thrust belt, Southwest China: Implications for multiple oil-generation episodes and sources. Am. Assoc. Pet. Geol. Bull. 2018, 102, 913–938. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.H.; Feng, Y.X.; Zhao, J.X.; Wang, Z.C.; Hu, M.Y.; Jiang, H.; Nguyen, A.D. In situ U-Pb Dating and geochemical characterization of multi-stage dolomite cementation in the ediacaran Dengying formation, Central Sichuan Basin, China: Constraints on diagenetic, hydrothermal and Paleo-Oil filling events. Precambrian Res. 2022, 368, 106481. [Google Scholar] [CrossRef]
- Wang, G.Z.; Liu, S.G.; Liu, W.; Fan, L.; Yuan, H.F. Process of hydrocarbon accumulation of Sinian Dengying formation in Gaoshiti structure, Central Sichuan, China. J. Chengdu Univ. Technol. Technol. Ed. 2014, 41, 684–693, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Su, A.; Chen, H.H.; Feng, Y.X.; Zhao, J.X.; Nguyen, A.D.; Wang, Z.C.; Long, X.P. Dating and characterizing primary gas accumulation in precambrian dolomite reservoirs, Central Sichuan Basin, China: Insights from pyrobitumen Re-Os and dolomite U-Pb geochronology. Precambrian Res. 2020, 350, 105897. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Wang, D.H.; Zhang, C.Q. Rb-Sr isotopic age of sphalerite from the Paoma Lead-Zinc deposit in Sichuan province and Its implications. Geol. China 2010, 37, 488–494, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, W.B.; Huang, Z.L.; Wang, Y.X.; Chen, J.; Han, R.S.; Xu, C.; Guan, T.; Yin, M.D. Age of the Giant Huize Zn–Pb Deposits Determined by Sm-Nd Dating of Hydrothermal Calcite. Geol. Rev. 2004, 50, 189–195. Available online: http://www.corc.org.cn/handle/1471x/178531 (accessed on 16 September 2022). (In Chinese with English Abstract).
- Zhang, Y.X.; Yue, W.; Guang, T.; Liang, S.; Zhou, Y.M.; Dong, W.W.; Rong, Z.; Yang, X.C.; Zhang, C.Q. Mineralization age and the source of ore-forming material at Lehong Pb–Zn deposit, Yunnan province: Constraints from Rb-Sr and S isotopes system. Acta Mineral. Sin. 2014, 34, 305–311, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhou, J.X.; Huang, Z.L.; Yan, Z.F. The origin of the Maozu carbonate-hosted Pb–Zn deposit, Southwest China: Constrained by C–O–S–Pb isotopic compositions and Sm–Nd isotopic age. J. Asian Earth Sci. 2013, 73, 39–47. [Google Scholar] [CrossRef]
- Zhou, J.X.; Huang, Z.L.; Zhou, M.F.; Li, X.B.; Jin, Z.G. Constraints of C–O–S–Pb isotope compositions and Rb–Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb–Zn deposit, SW China. Ore Geol. Rev. 2013, 53, 77–92. [Google Scholar] [CrossRef]
- Ohomoto, H.; Rye, R. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits; John Wiley and Sons, Inc.: New York, NY, USA, 1979; pp. 505–567. [Google Scholar]
- Chaussidon, M.; Lorand, J.P. Sulphur isotope composition of orogenic spinel lherzolite massifs from ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochim. Cosmochim. Acta 1990, 54, 2835–2846. [Google Scholar] [CrossRef]
- Rollinson, H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation; John Wiley and Sons: New York, NY, USA, 1993; ISBN 0582067014. [Google Scholar]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Seal, R.R. Sulfur isotope geochemistry of sulfide minerals. Rev. Mineral. Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef] [Green Version]
- Ohmoto, H.; Kaiser, C.J.; Geer, K.A. Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted basemetal deposits. Stable Isot. Stable Isot. Fluid Process. Miner. 1992, 23, 70–120. [Google Scholar]
- Machel, H. Bacterial and thermochemical sulfate reduction in diagenetic settings—Old and new insights. Sediment. Geol. 2001, 140, 143–175. [Google Scholar] [CrossRef]
- Basuki, N.I.; Taylor, B.E.; Spooner, E.T.C. Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in mississippi Valley-Type Zinc-Lead mineralization, Bongara Area, Northern Peru. Econ. Geol. 2008, 103, 783–799. [Google Scholar] [CrossRef]
- Anderson, G.M. Kerogen as a source of sulfur in MVT deposits. Econ. Geol. 2015, 110, 837–840. [Google Scholar] [CrossRef]
- Orr, W.L. Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation--study of big horn basin paleozoic oils. Am. Assoc. Pet. Geol. Bull. 1974, 58, 2295–2318. [Google Scholar] [CrossRef]
- Richardson, C.K.; Rye, R.O.; Wasserman, M.D. The chemical and thermal evolution of the fluids in the cave-in-rock fluorspar district, illinois; stable isotope systematics at the deardorff mine. Econ. Geol. 1988, 83, 765–783. [Google Scholar] [CrossRef]
- Orr, W.L. Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas. Geol. Soc. Am. Bull. 1975, 48, 1220–1221. [Google Scholar]
- Ohmoto, H.; Goldhaber, B. Sulphur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits; John Wiley and Sons, Inc.: New York, NY, USA, 1997; pp. 517–600. [Google Scholar]
- Thode, H.G.; Monster, J. Sulfur-isotope geochemistry of petroleum, evaporites, and ancient seas. Fluids Subsurf. Environ. 1965, 24, 21–27. [Google Scholar] [CrossRef]
- Kiyosu, Y.; Krouse, H.R. The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope Effect. Geochem. J. 1990, 24, 21–27. [Google Scholar] [CrossRef] [Green Version]
- MacGowan, D.B.; Surdam, R.C. Difunctional carboxylic acid anions in oilfield waters. Org. Geochem. 1988, 12, 245–259. [Google Scholar] [CrossRef]
- Lu, J.L.; Yuan, Z.Q. Experimental Studies of Organic-Zn Complexes and Their Stability. Geochimica 1986, 4, 66–77. Available online: https://qikan.cqvip.com/Qikan/Article/Detail?id=8456886&from=Qikan_Article_Detail (accessed on 20 September 2022). (In Chinese with English Abstract).
- Fu, J.M.; Peng, P.A.; Lin, Q.; Liu, D.H.; Jia, R.F.; Shi, J.X.; Lu, J.L. Several problems in the study of organic geochemistry of stratigraphic deposits. Adv. Earth Sci. 1990, 5, 43–49. (In Chinese) [Google Scholar]
- Wang, G.Z.; Liu, S.G.; Su, W.C.; Sun, W.; Wang, D.; Yuan, H.F.; Xu, G.S.; Zou, C. Water Soluble Gas in Deep CarbonateReservoir, Sichuan Basin, Southwest China. J. Earth Ence 2008, 19, 636–644. Available online: http://en.earth-science.net/en/article/id/433 (accessed on 30 September 2022).
Sample Number | Samples Type | nC21−/nC22+ | Pr/Ph | Pr/nC17 | Ph/nC18 | OEP |
---|---|---|---|---|---|---|
XQ18-2 | Bitumen in Maidiping Member | 0.40 | 0.65 | 0.48 | 0.32 | 1.00 |
XQ18-5 | 0.58 | 0.35 | 0.44 | 0.43 | 1.14 | |
XQ18-18 | 0.18 | 0.34 | 0.33 | 0.37 | 1.18 | |
XQ18-26 | 0.14 | 0.95 | 0.50 | 0.31 | 1.36 | |
XQ18-33 | 0.21 | 0.23 | 0.38 | 0.35 | 1.16 | |
MX9-1 | Source rocks in Qiongzhusi Fm. | 1.14 | 0.54 | 0.50 | 0.53 | 1.02 |
MX9-2 | 1.04 | 0.47 | 0.51 | 0.55 | 1.01 | |
MX9-3 | 0.98 | 0.55 | 0.49 | 0.57 | 1.04 | |
GS17-2 | 0.63 | 0.85 | 0.76 | 0.71 | 0.93 | |
GS17-8 | 1.26 | 0.67 | 0.94 | 1.16 | 1.01 | |
GS17-12 | 1.15 | 0.60 | 0.60 | 0.60 | 1.01 |
Sample Number | XQ18-2 | XQ18-5 | XQ18-18 | XQ18-26 | XQ18-33 |
---|---|---|---|---|---|
Ts/Tm | 0.84 | 0.88 | 0.81 | 0.69 | 0.86 |
Gammacerane/C30H | 0.17 | 0.19 | 0.17 | 0.16 | 0.15 |
Ts/(Ts + Tm) | 0.46 | 0.47 | 0.45 | 0.41 | 0.46 |
C31-35 homohopane/C30 hopane | 0.83 | 0.92 | 0.85 | 0.83 | 0.79 |
C29Ts/(C29Ts + C29H) | 0.24 | 0.23 | 0.24 | 0.26 | 0.25 |
C31(22S)/(22S + 22R) | 0.54 | 0.54 | 0.54 | 0.54 | 0.55 |
C32(22S)/(22S + 22R) | 0.59 | 0.57 | 0.57 | 0.59 | 0.59 |
C27 regular sterane (%) | 0.36 | 0.34 | 0.34 | 0.32 | 0.34 |
C28 regular sterane (%) | 0.34 | 0.29 | 0.29 | 0.31 | 0.31 |
C29 regular sterane (%) | 0.31 | 0.37 | 0.37 | 0.38 | 0.35 |
4-methyl sterane/C29 Sterane | 0.51 | 0.49 | 0.55 | 0.46 | 0.49 |
C29ββ/(αα + ββ) | 0.42 | 0.43 | 0.37 | 0.43 | 0.38 |
C29αα20S/(αα20S + αα20R) | 0.42 | 0.43 | 0.41 | 0.4 | 0.4 |
Sample Number | Location | Texture | Structure (Stage) | Mineral | δ34S (‰) |
---|---|---|---|---|---|
SDY-3-2-G | Shandouya | Coarse grain | Laminated (II) | Galena | 10.5 |
SDY-3-3-G | Shandouya | Coarse grain | Massive (II) | Galena | 9.0 |
SDY-3-7-G | Shandouya | Coarse grain | Massive (II) | Galena | 9.0 |
SDY-3-8-G | Shandouya | Coarse grain | Massive (II) | Galena | 10.2 |
SDY-3-12-G | Shandouya | Fine grain | Disseminated (II) | Galena | 8.7 |
XQ-1-11-G | Xuequ | Coarse grain | Massive (II) | Galena | 7.9 |
XQ-1-42-G | Xuequ | Fine grain | Banded (II) | Galena | 9.7 |
XQ-1-45-G | Xuequ | Medium grain | Disseminated (II) | Galena | 5.4 |
XQ-1-47-G | Xuequ | Fine grain | Massive (II) | Galena | 15.1 |
XQ-1-8-G | Xuequ | Fine grain | Banded (II) | Galena | 5.2 |
XQ-1-10-G | Xuequ | Fine grain | Massive (II) | Galena | 11.0 |
SDY-3-2-S | Shandouya | Fine grain | Laminated (II) | Sphalerite | 16.8 |
SDY-3-3-S | Shandouya | Coarse grain | Massive (II) | Sphalerite | 12.6 |
SDY-3-4-S | Shandouya | Fine grain | Veined (II) | Sphalerite | 10.5 |
SDY-3-7-S | Shandouya | Coarse grain | Massive (II) | Sphalerite | 12.5 |
SDY-3-8-S | Shandouya | Coarse grain | Massive (II) | Sphalerite | 13.0 |
SDY-3-10-S | Shandouya | Coarse grain | Disseminated (II) | Sphalerite | 11.9 |
SDY-3-12-S | Shandouya | Fine grain | Disseminated (II) | Sphalerite | 12.9 |
XQ-1-8-S | Xuequ | Fine grain | Banded (II) | Sphalerite | 11.3 |
XQ-1-11-S | Xuequ | Medium grain | Massive (II) | Sphalerite | 10.7 |
XQ-1-13-S | Xuequ | Fine grain | Disseminated (II) | Sphalerite | 12.3 |
XQ-1-16-S | Xuequ | Coarse grain | Banded (II) | Sphalerite | 12.8 |
XQ-1-42-S | Xuequ | Coarse grain | Banded (II) | Sphalerite | 10.5 |
XQ-1-45-S | Xuequ | Coarse grain | Disseminated (II) | Sphalerite | 9.0 |
XQ-1-33-S | Xuequ | Coarse grain | Banded (II) | Sphalerite | 9.2 |
XQ-1-47-S | Xuequ | Coarse grain | Massive (II) | Sphalerite | 18.3 |
XQ-1-20-S | Xuequ | Coarse grain | Disseminated (II) | Sphalerite | 12.8 |
Sample Number | Pb | Zn |
---|---|---|
XQ-18-2 | 287 | 15 |
XQ-18-3 | 52 | 21 |
XQ-18-6 | 152 | 36 |
XQ-18-7 | 85 | 40 |
XQ-18-9 | 20 | 67 |
XQ-18-13 | 31 | 75 |
XQ-18-21 | 42 | 76 |
XQ-18-23 | 143 | 102 |
XQ-18-27 | 86 | 231 |
XQ-18-31 | 58 | 232 |
XQ-18-36 | 63 | 256 |
XQ-18-38 | 131 | 5370 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Lei, Q.; Huang, Z.; Liu, G.; Fu, Y.; Li, N.; Liu, J. Genetic Relationship between Mississippi Valley-Type Pb–Zn Mineralization and Hydrocarbon Accumulation in the Wusihe Deposits, Southwestern Margin of the Sichuan Basin, China. Minerals 2022, 12, 1447. https://doi.org/10.3390/min12111447
Wang G, Lei Q, Huang Z, Liu G, Fu Y, Li N, Liu J. Genetic Relationship between Mississippi Valley-Type Pb–Zn Mineralization and Hydrocarbon Accumulation in the Wusihe Deposits, Southwestern Margin of the Sichuan Basin, China. Minerals. 2022; 12(11):1447. https://doi.org/10.3390/min12111447
Chicago/Turabian StyleWang, Guozhi, Qing Lei, Zhu Huang, Gang Liu, Yuzhen Fu, Na Li, and Jinlong Liu. 2022. "Genetic Relationship between Mississippi Valley-Type Pb–Zn Mineralization and Hydrocarbon Accumulation in the Wusihe Deposits, Southwestern Margin of the Sichuan Basin, China" Minerals 12, no. 11: 1447. https://doi.org/10.3390/min12111447
APA StyleWang, G., Lei, Q., Huang, Z., Liu, G., Fu, Y., Li, N., & Liu, J. (2022). Genetic Relationship between Mississippi Valley-Type Pb–Zn Mineralization and Hydrocarbon Accumulation in the Wusihe Deposits, Southwestern Margin of the Sichuan Basin, China. Minerals, 12(11), 1447. https://doi.org/10.3390/min12111447