COSMO-SkyMed SAR for Detection and Monitoring of Archaeological and Cultural Heritage Sites
Abstract
:1. Introduction
2. Materials and Methods
2.1. COSMO-SkyMed Mission Overview
- Spotlight (Spotlight-1, and Spotlight-2 or Enhanced Spotlight), very high resolution, and relatively small image area;
- StripMap (Himage, and PingPong), high and medium resolution, and medium-sized image area;
- ScanSAR (Wide Region, and Huge Region), medium and low resolution, and large image area.
- Level 0, raw products, containing the unpacked echo data in complex in-phase and quadrature signal (I and Q) format.
- Level 1A, single-look complex slant products (SCS), i.e., raw data focused in slant range and zero Doppler projection (i.e., the sensor natural acquisition projection). The product contains in-phase and quadrature of the focused data, weighted and radiometrically equalized.
- Level 1B, detected ground multi-look product (DGM), obtained by detecting, multi-looking and projecting the SCS data onto a regular ground grid. The only exception is for Enhanced Spotlight data that are not multi-looked and therefore are provided with nominal 1 m × 1 m geometric resolution.
- Level 1C/1D, geocoded ellipsoid-corrected (GEC) and geocoded terrain-corrected (GTC) products, respectively. They are obtained by projecting the DGM product onto a regular grid in a chosen cartographic reference system. In case of Level 1C the surface is the Earth ellipsoid, while for the Level 1D a DEM is used to approximate the real Earth surface. In particular, the DEM employed is the NASA’s Shuttle Radar Topography Mission (SRTM) global DEM at 3 arc-sec spatial resolution, i.e., ~90 m, so Level 1D products are available only within the latitudes of 60° N and 56° S.
- Co-registered products, i.e., two or more SCS or DGM products co-registered (i.e., superimposed) to a single master as reference. This is helpful for InSAR and change detection, as this is a compulsory processing step in this type of analyses, that otherwise the users would need to implement themselves.
- Mosaicked products, i.e., DGM, GEC or GTC assembled into a common grid. This option could be recommended, for example, for those users interested in regional surveying over large areas.
- Speckle filtered image, i.e., an image with an increased equivalent number of looks (ENL), wherein the radiometric resolution of the SAR images was improved by reducing the intrinsic multiplicative-like speckle noise. However, the ground range and azimuth resolutions are degraded compared to SCS products, e.g., ≤4.5 m in Enhanced Spotlight, ≤25 m in StripMap Himage and ≤90 m in StripMap PingPong.
- Interferometric products, containing interferometric coherence and phase, are obtained by processing Level 1A co-registered data, taken in any acquisition mode (except for polarimetric ones), and processed to generate the wrapped interferometric phase and its coherence map. Spacing features of the interferometric products are inherited from the co-registered input SAR image pairs, but due to interferometric multi-looking, spacing and corresponding size are reduced by a factor of three in range and four in azimuth for Spotlight, and four and five for StripMap Himage.
- DEM products are generated by means of interferometric processing of Level 1A co-registered products, in any acquisition mode (except for polarimetric ones) and are provided as an ellipsoidal height map and associated height error map. For relative and absolute height and horizontal accuracies, as well as posting, the reader can refer to Reference [25].
2.2. COSMO-SkyMed Properties Useful for Archaeology and Cultural Heritage
2.3. COSMO-SkyMed Data Used for the Use-Cases
3. Results and Discussion
3.1. Image Interpretation and Feature Reconnaissance
3.2. Archaeological Surveying of Surface Features with DEM
3.3. Archaeological Prospection of Subsurface and Buried Features
3.4. Environmental Monitoring with Amplitude Change Detection
3.5. Condition Assessment and Monitoring of Landscape Disturbance
3.6. Damage Assessment in Areas of Conflict
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tapete, D.; Cigna, F. Trends and perspectives of space-borne SAR remote sensing for archaeological landscape and cultural heritage applications. J. Archaeol. Sci. Rep. 2017, 14, 716–726. [Google Scholar] [CrossRef] [Green Version]
- Tapete, D.; Cigna, F. SAR for Landscape Archaeology; Springer: Cham, Switzerland, 2017; pp. 101–116. [Google Scholar]
- Tapete, D.; Fanti, R.; Cecchi, R.; Petrangeli, P.; Casagli, N. Satellite radar interferometry for monitoring and early-stage warning of structural instability in archaeological sites. J. Geophys. Eng. 2012, 9, 10–25. [Google Scholar] [CrossRef]
- Tapete, D.; Casagli, N.; Luzi, G.; Fanti, R.; Gigli, G.; Leva, D. Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. J. Archaeol. Sci. 2013, 40, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Chen, F.; Zhu, X.; Zhou, W.; Tang, P.; Chen, F.; Zhu, X.; Zhou, W. Monitoring Cultural Heritage Sites with Advanced Multi-Temporal InSAR Technique: The Case Study of the Summer Palace. Remote Sens. 2016, 8, 432. [Google Scholar] [CrossRef]
- Bonano, M.; Manzo, M.; Casu, F.; Manunta, M.; Lanari, R. DInSAR for the Monitoring of Cultural Heritage Sites; Springer: Cham, Switzerland, 2017; pp. 117–134. [Google Scholar]
- Tapete, D.; Cigna, F. InSAR data for geohazard assessment in UNESCO World Heritage sites: State-of-the-art and perspectives in the Copernicus era. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 24–32. [Google Scholar] [CrossRef]
- Copernicus for Cultural Heritage: Satellites to Preserve the Legacy from Our Past. Copernicus. Available online: https://www.copernicus.eu/en/copernicus-cultural-heritage-satellites-preserve-legacy-our-past (accessed on 26 April 2019).
- EURISY Space4Culture: Satellite Services for Historical and Creative Cities. Proceedings and Main Messages of the Conference. Available online: https://drive.google.com/file/d/1NKao-0HK2NPmVpwVRq2vbdHjrJ2AL6wY/view (accessed on 26 April 2019).
- Adams, R.E.; Brown, W.E.; Culbert, T.P. Radar mapping, archeology, and ancient Maya land use. Science 1981, 213, 1457–1468. [Google Scholar] [CrossRef]
- Elachi, C.; Roth, L.E.; Schaber, G.G. Spaceborne Radar Subsurface Imaging in Hyperarid Regions. IEEE Trans. Geosci. Remote Sens. 1984, 22, 383–388. [Google Scholar] [CrossRef]
- Moore, E.; Freeman, T.; Hensley, S. Spaceborne and Airborne Radar at Angkor: Introducing New Technology to the Ancient Site. In Remote Sensing in Archaeology; Springer: New York, NY, USA, 2006; pp. 185–216. [Google Scholar]
- Wiseman, J.; El-Baz, F. (Eds.) Interdisciplinary Contributions to Archaeology. In Remote Sensing in Archaeology; Springer: New York, NY, USA, 2007. [Google Scholar]
- Chen, F.; Lasaponara, R.; Masini, N. An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring. J. Cult. Herit. 2017, 23, 5–11. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N. Satellite synthetic aperture radar in archaeology and cultural landscape: An overview. Archaeol. Prospect. 2013, 20, 71–78. [Google Scholar] [CrossRef]
- Opitz, R.; Herrmann, J. Recent Trends and Long-standing Problems in Archaeological Remote Sensing. J. Comput. Appl. Archaeol. 2018, 1, 19–41. [Google Scholar] [CrossRef] [Green Version]
- Lasaponara, R.; Masini, N.; Pecci, A.; Perciante, F.; Pozzi Escot, D.; Rizzo, E.; Scavone, M.; Sileo, M. Qualitative evaluation of COSMO SkyMed in the detection of earthen archaeological remains: The case of Pachamacac (Peru). J. Cult. Herit. 2017, 23, 55–62. [Google Scholar] [CrossRef]
- Linck, R.; Busche, T.; Buckreuss, S.; Fassbinder, J.W.E.; Seren, S. Possibilities of Archaeological Prospection by High-resolution X-band Satellite Radar—A Case Study from Syria. Archaeol. Prospect. 2013, 20, 97–108. [Google Scholar] [CrossRef]
- Grandoni, D.; Battagliere, M.L.; Daraio, M.G.; Sacco, P.; Coletta, A.; Di Federico, A.; Mastracci, F. Space-based Technology for Emergency Management: The COSMO-SkyMed Constellation Contribution. Procedia Technol. 2014, 16, 858–866. [Google Scholar] [CrossRef] [Green Version]
- Battagliere, M.L.; Virelli, M.; Lenti, F.; Lauretta, D.; Coletta, A. A Review of the Exploitation of the Operational Mission COSMO-SkyMed: Global Trends (2014–2017). Space Policy 2019. [Google Scholar] [CrossRef]
- Chen, F.; Masini, N.; Yang, R.; Milillo, P.; Feng, D.; Lasaponara, R. A space view of radar archaeological marks: First applications of COSMO-SkyMed X-band data. Remote Sens. 2015, 7, 24–50. [Google Scholar] [CrossRef]
- Stewart, C. Detection of archaeological residues in vegetated areas using satellite synthetic aperture radar. Remote Sens. 2017, 9, 118. [Google Scholar] [CrossRef]
- Monterroso Checa, A.; Martínez Reche, T. COSMO SkyMed X-Band SAR application—Combined with thermal and RGB images—In the archaeological landscape of Roman Mellaria (Fuente Obejuna-Córdoba, Spain). Archaeol. Prospect. 2018, 25, 301–314. [Google Scholar] [CrossRef]
- Covello, F.; Battazza, F.; Coletta, A.; Lopinto, E.; Fiorentino, C.; Pietranera, L.; Valentini, G.; Zoffoli, S. COSMO-SkyMed an existing opportunity for observing the Earth. J. Geodyn. 2010, 49, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Italian Space Agency—ASI. COSMO—SkyMed Mission and Products Description; Doc. N° ASI-CSM-PMG-NT-001, 31 May 2016, issue 2; Italian Space Agency: Rome, Italy, 2016; p. 151. [Google Scholar]
- Schmidt, A.R.; Linford, P.; Linford, N.; David, A.; Gaffney, C.F.; Sarris, A.; Faßbinder, J. Europae Archaeologiae Consilium. In EAC Guidelines for the Use of Geophysics in Archaeology: Questions to Ask and Points to Consider: EAC Guidelines 2; Europae Archaeologia Consilium (EAC), Association Internationale sans But Lucratif (AISBL): Namur, Belgium, 2015. [Google Scholar]
- Tapete, D.; Cigna, F.; Donoghue, D.N.M. “Looting marks” in space-borne SAR imagery: Measuring rates of archaeological looting in Apamea (Syria) with TerraSAR-X Staring Spotlight. Remote Sens. Environ. 2016, 178, 42–58. [Google Scholar] [CrossRef]
- Balz, T.; Caspari, G.; Fu, B.; Liao, M. Discernibility of burial mounds in high-resolution X-Band SAR images for archaeological prospections in the Altai mountains. Remote Sens. 2016, 8, 817. [Google Scholar] [CrossRef]
- Stewart, C.; Lasaponara, R.; Schiavon, G. Multi-frequency, polarimetric SAR analysis for archaeological prospection. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 211–219. [Google Scholar] [CrossRef]
- Dore, N.; Patruno, J.; Pottier, E.; Crespi, M. New research in polarimetric SAR technique for archaeological purposes using ALOS PALSAR data. Archaeol. Prospect. 2013, 20, 79–87. [Google Scholar] [CrossRef]
- Patruno, J.; Dore, N.; Crespi, M.; Pottier, E. Polarimetric multifrequency and multi-incidence SAR sensors analysis for archaeological purposes. Archaeol. Prospect. 2013, 20, 89–96. [Google Scholar] [CrossRef]
- User Guides—Sentinel-1 SAR—Sentinel. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar (accessed on 26 April 2019).
- DLR Microwaves and Radar Institute TanDEM-X—A New High Resolution Interferometric SAR Mission. Available online: https://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10293/427_read-19779/#/gallery/24722 (accessed on 31 May 2019).
- Battagliere, M.L.; Covello, F.; Coletta, A. COSMO-SkyMed Background Mission: Overview, Objectives and Results. In Proceedings of the 63rd International Astronautical Congress 2012, Naples, Italy, 1–5 October 2012. Paper IAC-12.B1.5.12. [Google Scholar]
- Rayne, L.; Bradbury, J.; Mattingly, D.; Philip, G.; Bewley, R.; Wilson, A. From Above and on the Ground: Geospatial Methods for Recording Endangered Archaeology in the Middle East and North Africa. Geosciences 2017, 7, 100. [Google Scholar] [CrossRef]
- Holcomb, D.W.; Shingiray, I.L. Imaging Radar in Archaeological Investigations: An Image Processing Perspective. In Remote Sensing in Archaeology; Springer: New York, NY, USA, 2006; pp. 11–45. [Google Scholar]
- Ford, J.P.; Cimino, J.B.; Elachi, C. Space Shuttle Columbia Views the World with Imaging Radar: The SIR-A Experiment; Jet Propulsion Laboratory: Pasadena, CA, USA, 1982; JPL Pub.82–95. [Google Scholar]
- Tapete, D.; Cigna, F.; Masini, N.; Lasaponara, R. Prospection and monitoring of the archaeological heritage of Nasca, Peru, with ENVISAT ASAR. Archaeol. Prospect. 2013, 20, 133–147. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D.; Lasaponara, R.; Masini, N. Amplitude change detection with ENVISAT ASAR to image the cultural landscape of the Nasca region, Peru. Archaeol. Prospect. 2013, 20, 117–131. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Orengo, H.A.; Petrie, C.A. Multi-scale relief model (MSRM): A new algorithm for the visualization of subtle topographic change of variable size in digital elevation models. Earth Surf. Process. Landf. 2018, 43, 1361–1369. [Google Scholar] [CrossRef]
- Erasmi, S.; Rosenbauer, R.; Buchbach, R.; Busche, T.; Rutishauser, S. Evaluating the quality and accuracy of TanDEM-X digital elevation models at archaeological sites in the Cilician Plain, Turkey. Remote Sens. 2014, 6, 9475–9493. [Google Scholar] [CrossRef]
- Rutishauser, S.; Erasmi, S.; Rosenbauer, R.; Buchbach, R. SARchaeology—Detecting Palaeochannels Based on High Resolution Radar Data and Their Impact of Changes in the Settlement Pattern in Cilicia (Turkey). Geosciences 2017, 7, 109. [Google Scholar] [CrossRef]
- Lombardi, N.; Lorusso, R.; Milillo, G. Accuracy of high resolution CSK interferometric Digital Elevation Models. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 13–18 July 2015; pp. 2967–2970. [Google Scholar]
- Pedersén, O. Ancient Near East on Google Earth: Problems, Preliminary Results, and Prospects. In Proceedings of the 7th International Congress on the Archaeology of the Ancient Near East, London, UK, 12–16 April 2010; pp. 385–393. [Google Scholar]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory; Artech House: Norwood, MA, USA, 1982; p. 634. [Google Scholar]
- Jiang, A.; Chen, F.; Masini, N.; Capozzoli, L.; Romano, G.; Sileo, M.; Yang, R.; Tang, P.; Chen, P.; Lasaponara, R.; et al. Archeological crop marks identified from Cosmo-SkyMed time series: The case of Han-Wei capital city, Luoyang, China. Int. J. Digit. Earth 2017, 10, 846–860. [Google Scholar] [CrossRef]
- Conesa, F.C.; Devanthéry, N.; Balbo, A.L.; Madella, M.; Monserrat, O. Use of satellite SAR for understanding long-term human occupation dynamics in the monsoonal semi-arid plains of North Gujarat, India. Remote Sens. 2014, 6, 11420–11443. [Google Scholar] [CrossRef]
- Bachofer, F.; Quénéhervé, G.; Märker, M. The delineation of paleo-shorelines in the lake Manyara basin using TerraSAR-X data. Remote Sens. 2014, 6, 2195–2212. [Google Scholar] [CrossRef]
- Lefort, A.; Grippa, M.; Walker, N.; Stewart, L.J.; Woodhouse, I.H. Change detection across the Nasca pampa using spaceborne SAR interferometry. Int. J. Remote Sens. 2004, 25, 1799–1803. [Google Scholar] [CrossRef]
- Baade, J.; Schmullius, C. High-resolution mapping of fluvial landform change in arid environments using TerraSAR-X images. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Tracking human-induced landscape disturbance at the Nasca lines UNESCO World Heritage Site in Peru with COSMO-SkyMed InSAR. Remote Sens. 2018, 10, 572. [Google Scholar] [CrossRef]
- Plank, S. Rapid damage assessment by means of multi-temporal SAR-A comprehensive review and outlook to Sentinel-1. Remote Sens. 2014, 6, 4870–4906. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F.; Donoghue, D.N.M.; Philip, G. Mapping changes and damages in areas of conflict: From archive C-band SAR data to new HR X-band imagery, towards the Sentinels. In Proceedings of the FRINGE 2015, Frascati, Italy, 23–27 March 2015. ESA-SP Vol. 731, id.37. [Google Scholar]
- American Association for the Advancement of Science—AAAS. Ancient History, Modern Destruction: Assessing the Status of Syria’s Tentative World Heritage Sites Using High-Resolution Satellite Imagery. Available online: https://www.aaas.org/resources/ancient-history-modern-destruction-assessing-status-syria-s-tentative-world-heritage-sites-7 (accessed on 31 May 2019).
- ASOR Cultural Heritage Initiatives. ASOR Cultural Heritage Initiatives Monthly Report (April 2018). Available online: http://www.asor-syrianheritage.org/wp-content/uploads/2018/06/ASOR_CHI_April18_Appendices.pdf (accessed on 31 May 2019).
- Benenati, L.; Dore, N.; Bernardi, L.; Monteleone, A. ArTeK Sistema di Monitoraggio con COSMO-SkyMed e Gestione dei Beni Culturali al Servizio di Gestori e Visitatori. Available online: https://www.asi.it/sites/default/files/attach/evento/06_asiworkshop_13-15_11_2017_16-9_-_nais_01.pdf (accessed on 26 April 2019).
- Lorusso, R.; Fasano, L.; Dini, L.; Facchinetti, C.; Varacalli, G.N. COSMO-SkyMed di Seconda Generazione—Civilian Product Specifications. In Proceedings of the 69th International Astronautical Congress (IAC), Bremen, Germany, 1–5 October 2018; Paper IAC-18-B1.2.13. pp. 1–15. [Google Scholar]
- Zampolini, E.; Faustini, M.P. COSMO Second Generation. State of Art Technologies and System Innovations for Earth Observation Servicing Excellence. Available online: https://www.asi.it/sites/default/files/attach/evento/02_asi_workshop_15-11-2017_csg_state_of_art_technologies_final.pdf (accessed on 26 April 2019).
- De Luca, C.; Cuccu, R.; Elefante, S.; Zinno, I.; Manunta, M.; Casola, V.; Rivolta, G.; Lanari, R.; Casu, F. An on-demand web tool for the unsupervised retrieval of earth’s surface deformation from SAR data: The P-SBAS service within the ESA G-POD environment. Remote Sens. 2015, 7, 15630–15650. [Google Scholar] [CrossRef]
- Agapiou, A. Remote sensing heritage in a petabyte-scale: Satellite data and heritage Earth Engine© applications. Int. J. Digit. Earth 2017, 10, 85–102. [Google Scholar] [CrossRef]
- Orengo, H.A.; Petrie, C.A. Large-scale, multi-temporal remote sensing of palaeo-river networks: A case study from Northwest India and its implications for the Indus civilisation. Remote Sens. 2017, 9, 735. [Google Scholar] [CrossRef]
Imaging Mode | Resolution rg × az [m × m] | Swath [km × km] | Polarization | |
---|---|---|---|---|
Narrow field imaging | Spotlight-2 or Enhanced Spotlight * | 1 × 1 | 10 × 10 | Single (HH or VV) |
Wide field imaging | StripMap Himage * | 3 × 3 † | 40 × 40 | Single (HH or VV or VH or HV) |
StripMap PingPong * | 15 × 15 ‡ | 30 × 30 | Alternating (HH/VV or HH/HV or VV/VH) | |
ScanSAR Wide Region | 30 × 30 | 100 × 100 | Single (HH or HV or VH or VV) | |
ScanSAR Huge Region | 100 × 100 | 200 × 200 | Single (HH or HV or VH or VV) |
Heritage Site | No. of Images | Imaging Mode | Polarization | θ | Geometry | Acquisition Date(s) | Figure(s) |
---|---|---|---|---|---|---|---|
Nazca Lines (Peru) | 1 | SM | HH | 27° | ASC | 05/07/2018 | Figure 2 |
1 | SP | VV | 39° | ASC | 16/07/2018 | ||
4 | SM | HH | 27° | ASC | 10/07/2014, 12/04/2015; 13/12/2017, 30/01/2018; | Figure 8 | |
4 | SM | HH | 27° | ASC | 31/07/2013, 16/06/2014; 10/07/2014, 05/07/2015 | Figure 9 | |
Rio Ingenio (Peru) | 2 | SM | HH | 27° | ASC | 18/07/2017, 03/06/2018 | Figure 7 |
Apamea (Syria) | 1 | SP | HH | 41° | ASC | 16/07/2018 | Figures 3,10 |
Mari (Syria) | 2 | SM | HH | 40° | DESC | 10/03/2010, 10/08/2018 | Figure 11 |
Capo Colonna (Italy) | 54 | SP | HH | 42° | DESC | 28/09/2017–14/08/2018 | Figure 4 |
Wasit (Iraq) | 2 | SM | HH | 29° | ASC | 16/05/2018–17/05/2018 | Figure 5 |
Site X 1 | 1 | SP | HH | 39° | - | - | Figure 6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapete, D.; Cigna, F. COSMO-SkyMed SAR for Detection and Monitoring of Archaeological and Cultural Heritage Sites. Remote Sens. 2019, 11, 1326. https://doi.org/10.3390/rs11111326
Tapete D, Cigna F. COSMO-SkyMed SAR for Detection and Monitoring of Archaeological and Cultural Heritage Sites. Remote Sensing. 2019; 11(11):1326. https://doi.org/10.3390/rs11111326
Chicago/Turabian StyleTapete, Deodato, and Francesca Cigna. 2019. "COSMO-SkyMed SAR for Detection and Monitoring of Archaeological and Cultural Heritage Sites" Remote Sensing 11, no. 11: 1326. https://doi.org/10.3390/rs11111326
APA StyleTapete, D., & Cigna, F. (2019). COSMO-SkyMed SAR for Detection and Monitoring of Archaeological and Cultural Heritage Sites. Remote Sensing, 11(11), 1326. https://doi.org/10.3390/rs11111326