Sentinel-1-Imagery-Based High-Resolution Water Cover Detection on Wetlands, Aided by Google Earth Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Surface Water Detection Using Sentinel-1 C-SAR
2.3. Processing Data Using GEE
- Applied orbit files.
- GRD border noise removal.
- Thermal noise removal (as of 12 January 2018).
- Radiometric calibration (calculation of sigma naught values, σ0).
- Terrain correction (orthorectification).
2.4. Classification Method for Surface Water Cover Detection
2.5. Validation Procedure Using Landsat 8 and Sentinel-2 MNDWI
- Cloud-free Landsat 8 and Sentinel-2 data were selected and MNDWI images were calculated and downloaded with GEE.
- Performed cluster analysis on the MNDWI data with an optimized ISODATA algorithm [57] in SAGA GIS 5.0 open-source software (Departments for Physical Geography, Hamburg and Göttingen, Germany) with default settings (number of iterations: 20, initial clusters: 5, maximum number of clusters: 16). Identified the cluster that represented surface water cover. Polygonised the resulting thematic raster layer.
- Determined the true and false detection for each water polygon using the high-resolution imagery. Calculated the mean MNDWI for each water polygon. As a result, we had a data table with one column of Boolean values and the MNDWI mean value for each water polygon. In other words, we obtained a Boolean value and an MNDWI mean value pair as the input for the ROC curve calculation.
- Performed the ROC analysis. Reclassified the MNDWI images using the threshold values obtained via ROC.
- Compared the results with the radar results with statistics.
3. Results
3.1. Monthly Surface Water Cover
3.2. Validation Using MNDWI
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ramsar Sites of Hungary. Available online: https://www.ramsar.org/wetland/hungary (accessed on 27 March 2020).
- IPCC. Climate change 2013. The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Part of the working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change. 2013. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf (accessed on 27 March 2020).
- Mezősi, G.; Blanka, V.; Ladányi, Z.S.; Bata, T.; Urdea, P.; Frank, A.; Meyer, B. Expected mid- and long-term changes in drought hazard for the South-Eastern Carpathian Basin. Carpathian J. Earth Environ. Sci. 2016, 11, 355–366. [Google Scholar]
- Dawson, T.P.; Berry, P.M.; Kampa, E. Climate change impacts on freshwater wetland habitats. J. Nat. Conserv. 2003, 11, 25–30. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- Kovács, F. Változékonyság értékelése vizes élőhelyeken–Műholdképek alapján (Assessment of instability in a wetland area with remote sensing methods). Hidrol. Közlöny 2009, 89, 57–61. (in Hungarian). [Google Scholar]
- Rosenqvist, A.; Finlayson, C.M.; Lowry, J.; Taylor, D. The potential of long-wavelength satellite-borne radar to support implementation of the Ramsar Wetlands Convention. Aquat. Conserv. Mar. Freshw. Ecosyst. 2007, 17, 229–244. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Szczepankiewicz, K.; Malanowski, M.; Szczepankiewicz, M. Passive radar parallel processing using general-purpose computing on graphics processing units. Int. J. Electron. Telecommun. 2015, 61, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Yin, Q.; Wu, Y.; Zhang, F.; Zhou, Y. GPU-based soil parameter parallel inversion for PolSAR data. Remote Sens. 2020, 12, 415. [Google Scholar] [CrossRef] [Green Version]
- Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big data for remote sensing: Challenges and opportunities. Proc. IEEE 2016, 104, 2207–2219. [Google Scholar] [CrossRef]
- Liu, P.; Di, L.; Du, Q.; Wang, L. Remote sensing big data: Theory, methods and applications. Remote Sens. 2018, 10, 711. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovács, F. GIS analysis of short and long term hydrogeographical changes on a nature conservation area affected by aridification. Carpathian J. Earth Environ. Sci. 2013, 8, 97–108. [Google Scholar]
- Bihari, Z.; Babolcsay, G.; Bartholy, J.; Ferenczi, Z.; Kerényi, J.; Haszpra, L.; Újváry, K.; Kovács, T.; Lakatos, M.; Németh, Á.; et al. Éghajlat (Climate). In Magyarország Nemzeti Atlasza 2. Kötet: Természeti Környezet (Hungarian National Atlas, Nature Environment); Kocsis, K., Horváth, G., Keresztesi, Z., Nemerkényi, Z., Eds.; MTA CSFK Földrajztudományi Intézet: Budapest, Hungary, 2018; pp. 58–69. Available online: http://www.nemzetiatlasz.hu/MNA/MNA_2_5.pdf (accessed on 27 March 2020). (In Hungarian)
- Kovács, F.; Gulácsi, A. Spectral index-based monitoring (2000–2017) in lowland forests to evaluate the effects of climate change. Geosciences 2019, 9, 411. [Google Scholar] [CrossRef] [Green Version]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007, 45, 478. [Google Scholar] [CrossRef]
- Érdiné Szekeres, R. Szikes tavak (Saline Lakes); Környezetvédelmi Minisztérium Természetvédelmi Hivatala: Budapest, Hungary, 2002; pp. 10–11. (in Hungarian) [Google Scholar]
- Manjusree, P.; Prasanna Kumar, L.; Bhatt, C.M.; Rao, G.S.; Bhanumurthy, V. Optimization of threshold ranges for rapid flood inundation mapping by evaluating backscatter profiles of high incidence angle SAR images. Int. J. Disaster Risk Sci. 2012, 3, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Westerhoff, R.S.; Kleuskens, M.P.H.; Winsemius, H.C.; Huizinga, H.J.; Brakenridge, G.R.; Bishop, C. Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol. Earth Syst. Sci. 2013, 17, 651–663. [Google Scholar] [CrossRef] [Green Version]
- White, L.; Brisco, B.; Pregitzer, M.; Tedford, B.; Boychuk, L. RADARSAT-2 Beam Mode Selection for Surface Water and Flooded Vegetation Mapping. Can. J. Remote Sens. 2014, 40, 135–151. [Google Scholar] [CrossRef]
- Hong, S.; Jang, H.; Kim, N.; Sohn, H.-G. Water area extraction using RADARSAT SAR imagery combined with landsat imagery and terrain information. Sensors 2015, 15, 6652–6667. [Google Scholar] [CrossRef]
- Li, J.; Wang, S. An automated method for mapping inland surface waterbodies with Radarsat-2 imagery. Int. J. Remote Sens. 2015, 36, 1367–1384. [Google Scholar] [CrossRef]
- Bolanos, S.; Stiff, D.; Brisco, B.; Pietroniro, A. Operational surface water detection and monitoring using Radarsat-2. Remote Sens. 2016, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Liu, D. A local thresholding approach to flood water delineation using Sentinel-1SAR imagery. ISPRS J. Photogramm. Remote Sens. 2020, 159, 53–62. [Google Scholar] [CrossRef]
- Sokol, J.; Ncnairn, H.; Pultz, T.J. Case studies demonstrating the hydrological applications of C-band multipolarized and polarimetric SAR. Can. J. Remote Sens. 2004, 30, 470–483. [Google Scholar] [CrossRef]
- De Zan, F.; Guarnieri, A.M. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Brisco, B. Mapping and monitoring surface water and wetlands with synthetic aperture radar. In Remote Sensing of Wetlands: Applications and Advances; Tiner, R., Lang, M., Klemas, V., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 119–136. [Google Scholar]
- Hess, L.L.; Melack, J.M.; Simonett, D.S. Radar detection of flooding beneath the forest canopy: A review. Int. J. Remote Sens. 1990, 11, 1313–1325. [Google Scholar] [CrossRef]
- Engman, E.T. Remote sensing applications to hydrology: Future impact. Hydrol. Sci. J. 1996, 41, 637–647. [Google Scholar] [CrossRef]
- Lang, M.W.; Kasischke, E.S. Using C-band synthetic aperture radar data to monitor forested wetland hydrology in Maryland’s coastal plain, USA. IEEE Trans. Geosci. Remote Sens. 2008, 46, 535–546. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The use of imaging radars for ecological applications – A review. Remote Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Kasischke, E.S.; Brunzell, S.M.; Mudd, J.P.; Smith, K.B.; Frick, A.L. Analysis of space-borne SAR data for wetland mapping in Virginia riparian ecosystems. Int. J. Remote Sens. 2001, 22, 3665–3687. [Google Scholar] [CrossRef]
- Baghdadi, N.; Bernier, M.; Gauthier, R.; Neeson, I. Evaluation of C-band SAR data for wetlands mapping. Int. J. Remote Sens. 2001, 22, 71–88. [Google Scholar] [CrossRef]
- Google Earth Engine: A planetary-scale platform for Earth science data & analysis. Available online: https://earthengine.google.com/ (accessed on 27 March 2020).
- ESA step – science toolbox exploitation platform. Available online: http://step.esa.int/main/doc/tutorials/ (accessed on 27 March 2020).
- Small, D. Flattening Gamma: Radiometric terrain correction for SAR imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- Weiß, T. SAR-pre-processing documentation. 2018. Personal communication. Available online: https://buildmedia.readthedocs.org/media/pdf/multiply-sar-pre-processing/get_to_version_0.4/multiply-sar-pre-processing.pdf (accessed on 27 March 2020).
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume 2, Radar Remote Sensing and Surface Scattering and Emission Theory; Addison-Wesley: Reading, MA, USA, 1982; p. 608. [Google Scholar]
- Hird, J.N.; DeLancey, E.R.; McDermid, G.J.; Kariyeva, J. Google Earth Engine, Open-Access satellite data, and machine learning in support of large-area probabilistic wetland mapping. Remote Sens. 2017, 9, 1315. [Google Scholar] [CrossRef] [Green Version]
- Elyouncha, A.; Neyt, X.; Stoffelen, A.; Verspeek, J. Assessment of the corrected CMOD6 GMF using scatterometer data. In Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions; Browse Proceedings: Toulouse, France, 2015; p. 11. [Google Scholar]
- Onstott, R.; Shuchman, R. Sar measurements of sea ice. In Synthetic Aperture Radar Marine User’s Manual; Jackson, C.R., Apfel, J.R., Eds.; NOAA, U.S. Department of Commerce: Washington, DC, USA, 2004; pp. 81–115. [Google Scholar]
- Shokr, M.; Sinha, N. Sea Ice: Physics and Remote Sensing; American Geophysical Union, John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 325–326. [Google Scholar]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef]
- Lee, J.S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S. Refined filtering of image noise using local statistics. Comput. Vis. Graph. Image Process. 1981, 15, 380–389. [Google Scholar] [CrossRef]
- Yommy, A.S.; Liu, R.; Wu, S. SAR image despeckling using refined Lee filter. In 7th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC); IEEE: Hangzhou, China, 2015; pp. 260–265. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. k-means++: The advantages of carefull seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms: Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, January 2007; pp. 1027–1035. Available online: https://theory.stanford.edu/~sergei/papers/kMeansPP-soda.pdf (accessed on 27 March 2020).
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, B.; Tobak, Z.; Kovács, F.; Sipos, G. Towards a continuous inland excess water flood monitoring system based on remote sensing data. J. Environ. Geogr. 2017, 10, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- ROC curve, R script. Available online: http://oku.edu.mie-u.ac.jp/~okumura/stat/ROC.html (accessed on 29 March 2020).
- Memarsadeghi, N.; Mount, D.M.; Netanyahu, N.S.; Moigne, J.L. A fast implementation of the ISODATA clustering algorithm. Int. J. Comput. Geom. Appl. 2007, 17, 71–103. [Google Scholar] [CrossRef]
- Vekerdy, Z.; Qiu, Y.; Csorba, Á.; Czakó-Gál, E.; van Leeuwen, B. Belvíztérképezés Sentinel-1 és Sentinel-2 képek integrációjával (Inland excess water mapping with the integration of Sentinel-1 and Sentinel-2 imagery.). In Proceedings of the FÉNY-TÉR-KÉP Konferencia, Gárdony, Hungary, 15–16 November 2018; Available online: https://geoiq.hu/download/1971/ (accessed on 1 May 2020). (in Hungarian).
- Van Leeuwen, B.; Tobak, Z.; Kovács, F. Sentinel-1 and -2 Based near Real Time Inland Excess Water Mapping for Optimized Water Management. Sustainability 2020, 12, 2854. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.C.; Alsdorf, D.E. Control on sediment and organic carbon delivery to the Arctic Ocean revealed with space-borne synthetic aperture radar: Ob’ River, Siberia. Geology 1998, 26, 395–398. [Google Scholar] [CrossRef]
- Google Earth Engine Sentinel-1 Algorithms. Available online: https://developers.google.com/earth-engine/sentinel1 (accessed on 1 May 2020).
- Slagter, B.; Nandin-Erdene, T.; Andreas, V.; Johannes, R. Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case study in the St. Lucia wetlands, South Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102009. [Google Scholar] [CrossRef]
Satellite Image | Date of Acquisition |
---|---|
Pléiades 1B (50 cm) (CNES/Airbus) | 9 August 2016 |
WorldView-3 (30 cm) (DigitalGlobe) | 17 March 2017 |
Statistical Connections | Linear Regressions | |
---|---|---|
Pearson’s r-value | Spearman’s ρ-value | |
wekaKMeans_DESC ~ L8_MNDWI | 0.95 *** | 0.73 *** |
wekaKMeans_ASC ~ L8_MNDWI | 0.96 *** | 0.80 *** |
wekaKMeans_DESC ~ S2_MNDWI | 0.80 *** | 0.69 *** |
wekaKMeans_ASC ~ S2_MNDWI | 0.79 *** | 0.54 ** |
Data | Threshold Limit | AUC |
---|---|---|
Landsat 8 (15 August 2016) | MNDWI = 0.593 | 0.73 |
Landsat 8 (27 March 2017) | MNDWI = 0.656 | 0.76 |
Sentinel-2 (8 August 2016) | MNDWI = 0.553 | 0.78 |
Sentinel-2 (29 March 2017) | MNDWI = 0.586 | 0.74 |
Sentinel-1 (August 2016) | σ0 = −15.53 dB | 0.135 |
Sentinel-1 (March 2017) | σ0 = −17.87 dB | 0.135 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulácsi, A.; Kovács, F. Sentinel-1-Imagery-Based High-Resolution Water Cover Detection on Wetlands, Aided by Google Earth Engine. Remote Sens. 2020, 12, 1614. https://doi.org/10.3390/rs12101614
Gulácsi A, Kovács F. Sentinel-1-Imagery-Based High-Resolution Water Cover Detection on Wetlands, Aided by Google Earth Engine. Remote Sensing. 2020; 12(10):1614. https://doi.org/10.3390/rs12101614
Chicago/Turabian StyleGulácsi, András, and Ferenc Kovács. 2020. "Sentinel-1-Imagery-Based High-Resolution Water Cover Detection on Wetlands, Aided by Google Earth Engine" Remote Sensing 12, no. 10: 1614. https://doi.org/10.3390/rs12101614
APA StyleGulácsi, A., & Kovács, F. (2020). Sentinel-1-Imagery-Based High-Resolution Water Cover Detection on Wetlands, Aided by Google Earth Engine. Remote Sensing, 12(10), 1614. https://doi.org/10.3390/rs12101614