Bias Compensation for Rational Polynomial Coefficients of High-Resolution Satellite Imagery by Local Polynomial Modeling
Abstract
:1. Introduction
2. The Rational Function Model
3. The Bias-Compensated Models
3.1. Global Polynomial Models
- , which describe image coordinate translations (the global shift model);
- , which model shift and time-dependent errors (the global shift and drift model);
- , which represent an affine transformation (the global affine model);
- , which describe a second-order polynomial transformation (the global quadratic model).
3.2. Local Polynomial Models
- , which represent an affine transformation in a local region (the local affine model);
- , which describe a second-order polynomial transformation in a local area (the local quadratic model).
4. Experiments
4.1. Data
4.2. Schemes
4.3. Results
4.4. Discussions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Benediktsson, J.A.; Chanussot, J.; Moon, W.M. Very high-resolution remote sensing: Challenges and opportunities. Proc. IEEE 2012, 100, 1907–1910. [Google Scholar] [CrossRef]
- Tang, X.M.; Xie, J.F.; Wang, X.; Jiang, W.S. High-precision attitude post-processing and initial verification for the ZY-3 satellite. Remote Sens. 2015, 7, 111–134. [Google Scholar] [CrossRef]
- Hong, Z.H.; Tong, X.H.; Liu, S.J.; Chen, P.; Xie, H.; Jin, Y.M. A comparison of the performance of bias-corrected RSMs and RFMs for the geo-positioning of high-resolution satellite stereo imagery. Remote Sens. 2015, 7, 16815–16830. [Google Scholar] [CrossRef]
- Tao, C.V.; Hu, Y. 3D reconstruction methods based on the rational function model. Photogramm. Eng. Remote Sens. 2002, 68, 705–714. [Google Scholar]
- Shaker, I.F.; Abd-Elrahman, A.; Abdel-Gawad, A.K.; Sherief, M.A. Building extraction from high resolution space images in high density residential areas in the great cairo region. Remote Sens. 2011, 3, 781–791. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, M.; Xiong, X.; Xiong, J. Multistrip bundle block adjustment of ZY-3 satellite imagery by rigorous sensor model without ground control point. IEEE Geosci. Remote Sens. 2015, 12, 865–869. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Zhang, G.; Tang, X.; Li, D.-R.; Wang, T.; Huang, W.-C.; Li, L.-T. Improvement and assessment of the geometric accuracy of chinese high-resolution optical satellites. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1–12. [Google Scholar] [CrossRef]
- Oh, J.; Lee, C. Automated bias-compensation of rational polynomial coefficients of high resolution satellite imagery based on topographic maps. ISPRS J. Photogramm. Remote Sens. 2015, 100, 14–22. [Google Scholar] [CrossRef]
- Poli, D.; Toutin, T. Review of developments in geometric modelling for high resolution satellite pushbroom sensors. Photogramm. Rec. 2012, 26, 58–73. [Google Scholar] [CrossRef]
- Fraser, C.S.; Dial, G.; Grodecki, J. Sensor orientation via RPCs. ISPRS J. Photogramm. Remote Sens. 2006, 60, 182–194. [Google Scholar] [CrossRef]
- Tao, C.V.; Hu, Y. A comprehensive study of the rational function model for photogrammetric processing. Photogramm. Eng. Remote Sens. 2001, 67, 1347–1357. [Google Scholar]
- Li, C.; Shen, Y.Z.; Li, B.F.; Qiao, G.; Liu, S.J.; Wang, W.I.; Tong, X.H. An improved geopositioning model of QuickBird high resolution satellite imagery by compensating spatial correlated errors. ISPRS J. Photogramm. Remote Sens. 2014, 96, 12–19. [Google Scholar] [CrossRef]
- Sadeghian, S.; Valadan Zoej, M.J.; Delavar, M.R.; Abootalebi, A. Precision rectification of high resolution satellite imagery without ephemeris data. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 366–371. [Google Scholar] [CrossRef]
- Jiang, W.H.; Yu, A.X.; Dong, Z.; Wang, Q.S. Comparison and analysis of geometric correction models of spaceborne SAR. Sensors 2016, 16, 973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Balz, T.; Liao, M. Satellite SAR geocoding with refined RPC model. ISPRS J. Photogramm. Remote Sens. 2012, 69, 37–49. [Google Scholar] [CrossRef]
- Zhang, L.; He, X.Y.; Balz, T.; Wei, X.H.; Liao, M.S. Rational function modeling for spaceborne SAR datasets. ISPRS J. Photogramm. Remote Sens. 2011, 66, 133–145. [Google Scholar] [CrossRef]
- Capaldo, P.; Crespi, M.; Fratarcangeli, F.; Nascetti, A.; Pieralice, F. High-resolution SAR radargrammetry: A first application with COSMO-SkyMed spotlight imagery. IEEE Geosci. Remote Sens. 2011, 8, 1100–1104. [Google Scholar] [CrossRef]
- Li, R.; Di, K.; Ma, R. 3-D shoreline extraction from IKONOS satellite imagery. Mar. Geod. 2003, 26, 107–115. [Google Scholar] [CrossRef]
- Pehani, P.; Cotar, K.; Marsetic, A.; Zaletelj, J.; Ostir, K. Automatic geometric processing for very high resolution optical satellite data based on vector roads and orthophotos. Remote Sens. 2016, 8, 343. [Google Scholar] [CrossRef]
- Jeong, J.; Yang, C.; Kim, T. Geo-positioning accuracy using multiple-satellite images: IKONOS, QuickBird, and Kompsat-2 stereo images. Remote Sens. 2015, 7, 4549–4564. [Google Scholar] [CrossRef]
- Ling, X.; Zhang, Y.; Xiong, J.; Huang, X.; Chen, Z. An image matching algorithm integrating global SRTM and image segmentation for multi-source satellite imagery. Remote Sens. 2016, 8, 672. [Google Scholar] [CrossRef]
- Di, K.C.; Ma, R.J.; Li, R.X. Rational functions and potential for rigorous sensor model recovery. Photogramm. Eng. Remote Sens. 2003, 69, 33–41. [Google Scholar]
- Di, K.C.; Ma, R.J.; Li, R.X. Geometric processing of IKONOS stereo imagery for coastal mapping applications. Photogramm. Eng. Remote Sens. 2003, 69, 873–879. [Google Scholar]
- Xiong, Z.; Zhang, Y. A generic method for RPC refinement using ground control information. Photogramm. Eng. Remote Sens. 2009, 75, 1083–1092. [Google Scholar] [CrossRef]
- Teo, T.A. Bias compensation in a rigorous sensor model and rational function model for high-resolution satellite images. Photogramm. Eng. Remote Sens. 2011, 77, 1211–1220. [Google Scholar] [CrossRef]
- Fraser, C.S.; Hanley, H.B. Bias compensation in rational functions for IKONOS satellite imagery. Photogramm. Eng. Remote Sens. 2003, 69, 53–57. [Google Scholar] [CrossRef]
- Fraser, C.S.; Hanley, H.B. Bias-compensated rpcs for sensor orientation of high-resolution satellite imagery. Photogramm. Eng. Remote Sens. 2005, 71, 909–915. [Google Scholar] [CrossRef]
- Tong, X.H.; Liu, S.J.; Weng, Q.H. Bias-corrected rational polynomial coefficients for high accuracy geo-positioning of QuickBird stereo imagery. ISPRS J. Photogramm. Remote Sens. 2010, 65, 218–226. [Google Scholar] [CrossRef]
- Sekhar, K.S.S.; Kumar, A.S.; Dadhwal, V.K. Geocoding RISAT-1 MRS images using bias-compensated RPC models. Int. J. Remote Sens. 2014, 35, 7303–7315. [Google Scholar] [CrossRef]
- Grodecki, J.; Dial, G. Block adjustment of high-resolution satellite images described by rational polynomials. Photogramm. Eng. Remote Sens. 2003, 69, 59–68. [Google Scholar] [CrossRef]
- Wang, J.; Di, K.C.; Li, R. Evaluation and improvement of geopositioning accuracy of IKONOS stereo imagery. J. Surv. Eng. 2005, 131, 35–42. [Google Scholar]
- Barazzetti, L.; Roncoroni, F.; Brumana, R.; Previtali, M. Georeferencing accuracy analysis of a single Worldview-3 image collected over Milan. In Proceedings of the XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016.
- Astrand, P.J.; Bongiorni, M.; Crespi, M.; Fratarcangeli, F.; Da Costa, J.N.; Pieralice, F.; Walczynska, A. The potential of Worldview-2 for ortho-image production within the “control with remote sensing programme” of the european commission. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 335–347. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Li, Q.Q. Correcting bias in the rational polynomial coefficients of satellite imagery using thin-plate smoothing splines. ISPRS J. Photogramm. Remote Sens. 2017, 125, 125–131. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Lu, Y.H.; Wang, L.; Huang, X. A new approach on optimization of the rational function model of high-resolution satellite imagery. IEEE Trans. Geosci. Remote 2012, 50, 2758–2764. [Google Scholar] [CrossRef]
- Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Fan, J.C.C.; Gijbels, R. Local Polynomial Modelling and Its Applications; Chapman and Hall: London, UK, 1996; pp. 24–25. [Google Scholar]
- Takezawa, K. Introduction to Nonparametric Regression; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 185–191. [Google Scholar]
- Brovelli, M.A.; Crespi, M.; Fratarcangeli, F.; Giannone, F.; Realini, E. Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method. ISPRS J. Photogramm. Remote Sens. 2008, 63, 427–440. [Google Scholar] [CrossRef]
Image | Global Affine | Global Quadratic | Local Affine | Local Quadratic |
---|---|---|---|---|
Nadir | 3.00 | 2.48 | 2.88 | 2.97 |
Backward | 2.61 | 2.59 | 2.26 | 1.91 |
Forward | 2.47 | 2.62 | 2.84 | 2.81 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Li, Q.; Wu, G.; Zhu, J. Bias Compensation for Rational Polynomial Coefficients of High-Resolution Satellite Imagery by Local Polynomial Modeling. Remote Sens. 2017, 9, 200. https://doi.org/10.3390/rs9030200
Shen X, Li Q, Wu G, Zhu J. Bias Compensation for Rational Polynomial Coefficients of High-Resolution Satellite Imagery by Local Polynomial Modeling. Remote Sensing. 2017; 9(3):200. https://doi.org/10.3390/rs9030200
Chicago/Turabian StyleShen, Xiang, Qingquan Li, Guofeng Wu, and Jiasong Zhu. 2017. "Bias Compensation for Rational Polynomial Coefficients of High-Resolution Satellite Imagery by Local Polynomial Modeling" Remote Sensing 9, no. 3: 200. https://doi.org/10.3390/rs9030200
APA StyleShen, X., Li, Q., Wu, G., & Zhu, J. (2017). Bias Compensation for Rational Polynomial Coefficients of High-Resolution Satellite Imagery by Local Polynomial Modeling. Remote Sensing, 9(3), 200. https://doi.org/10.3390/rs9030200