Observed Thermal Impacts of Wind Farms Over Northern Illinois
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Region
2.2. Data
2.2.1. Remotely Sensed Data
2.2.2. Topography Data
2.2.3. Meteorological Data
2.3. Data Processing
2.4. Detection and Attribution Methods
2.4.1. Definition of Four Groups of Pixels
2.4.2. Spatial Pattern Analysis
2.4.3. Temporal Variability Analysis
3. Results and Discussion
3.1. Spatial Patterns of Wind Farm Impacts on LST
Number of Pixels (% of Total Pixels) | Season | WFPs | NNWFPs | UWFPs | DWFPs |
---|---|---|---|---|---|
Random | SCI threshold | 10.8 | 16.0 | 5.6 | 12.0 |
124 (5%) | DJF | 33.1 | 18.5 | 3.2 | 29.0 |
MAM | 29.0 | 6.5 | 0.0 | 23.4 | |
JJA | 40.3 | 8.1 | 0.8 | 20.2 | |
SON | 31.5 | 20.2 | 4.0 | 23.4 | |
ANN | 54.8 | 7.3 | 0.0 | 29.8 | |
249 (10%) | DJF | 27.7 | 15.7 | 5.2 | 29.7 |
MAM | 29.3 | 9.2 | 1.6 | 19.3 | |
JJA | 33.7 | 7.6 | 0.4 | 16.1 | |
SON | 30.5 | 14.1 | 3.6 | 23.3 | |
ANN | 42.2 | 8.8 | 2.0 | 30.1 | |
374 (15%) | DJF | 27.0 | 14.4 | 6.7 | 28.1 |
MAM | 25.7 | 9.9 | 2.7 | 19.0 | |
JJA | 29.9 | 7.0 | 0.3 | 13.4 | |
SON | 28.6 | 13.1 | 2.4 | 23.5 | |
ANN | 36.1 | 11.2 | 2.1 | 28.9 |
3.2. Temporal Variability of Wind Farm Impacts on LST
3.3. Possible Factors Determining Wind Farm Impacts
3.3.1. Impacts of Topography and Land Use Change
3.3.2. Impacts of Temperature Inversion
3.3.3. Impacts of Wind Speed
3.3.4. Impacts of Wind Direction
3.3.5. Impacts of MODIS LST Uncertainties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United States Department of Energy, 2008: 20% Wind Energy by 2030: Increasing Wind Energy’s Contribution to U.S. Electric Supply. Available online: http://www.nrel.gov/docs/fy08osti/41869.pdf (accessed on 23 June 2015).
- American Wind Energy Association, 2014: AWEA U.S. Wind Industry Fourth Quarter 2013 Market Report. AWEA Public Version. Available online: http://awea.files.cms-plus.com/FileDownloads/pdfs/AWEA%204Q2013%20Wind%20Energy%20Industry%20Market%20Report_Public%20Version.pdf (accessed on 23 June 2015).
- Baidya Roy, S.; Traiteur, J.J. Impacts of wind farms on surface air temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 17899–17904. [Google Scholar] [CrossRef] [PubMed]
- Rajewski, A.A.; Takle, E.S.; Lundquist, J.K.; Oncley, S.; Prueger, J.H.; Horst, T.W.; Rhodes, M.E.; Pfeiffer, R.; Hatfield, J.L.; Spoth, K.K.; et al. Crop Wind Energy Experiment (CWEX): Observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm. Bull. Amer. Meteor. Soc. 2013, 94. [Google Scholar] [CrossRef]
- Smith, C.M.; Barthelmie, R.J.; Pryor, S.C. In situ observations of the influence of large onshore wind farm on near-surface temperature, turbulence intensity, and wind speed profiles. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Keith, D.W.; DeCarolis, J.F.; Denkenberger, D.C.; Lenschow, D.H.; Malyshev, S.L.; Pacala, S.; Rasch, P.J. The influence of large-scale wind power on global climate. Proc. Natl. Acad. Sci. USA 2004, 101, 16115–16120. [Google Scholar] [CrossRef] [PubMed]
- Baidya Roy, S.; Pacala, S.W.; Walko, R.L. Can large wind farms affect local meteorology? J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Adams, A.S.; Keith, D.W. Wind energy and climate: modeling the atmospheric impacts of wind energy turbines. Available online: http://adsabs.harvard.edu/abs/2007AGUFM.B44B..08A (accessed on 24 June 2015).
- Barrie, D.B.; Kirk-Davidoff, D.B. Weather response to a large wind turbine array. Atmos. Chem. Phys. 2010, 10, 769–755. [Google Scholar] [CrossRef]
- Wang, C.; Prinn, R.G. Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys. 2010, 10, 2053–2061. [Google Scholar] [CrossRef]
- Fitch, A.C.; Olson, J.B.; Lundquist, J.K.; Dudhia, J.; Gupta, A.K.; Michalakes, J.; Barstad, I. Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Weather Rev. 2012, 140, 3017–3038. [Google Scholar] [CrossRef]
- Fitch, A.C.; Lundquist, J.K.; Olson, J.B. Mesoscale influences of wind farms throughout a diurnal cycle. Mon. Weather Rev. 2013, 141, 2173–2198. [Google Scholar] [CrossRef]
- Vautard, R.; Thais, F.; Tobin, I.; Bréon, F.-M.; Devezeaux de Lavergne, J.-G.; Colette, A.; Yiou, P.; Ruti, P.M. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Markfort, C.D.; Porté-Agel, F. Experimental study of the impact of large-scale wind farms on land-atmosphere exchanges. Environ. Res. Lett. 2013, 8, 015002. [Google Scholar] [CrossRef]
- Cervarich, M.C.; Baidya Roy, S.; Zhou, L. Spatiotemporal structure of wind farm-atmospheric boundary layer interactions. Energy Proced. 2013, 40, 530–536. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; de Melo-Abreu, J.P.; Snyder, R.L. Apple orchard frost protection with wind machine operation. Agric. For. Meteorol. 2006, 141, 71–81. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, Y.; Baidya Roy, S.; Thorncroft, C.; Bosart, L.F.; Hu, Y. Impacts of wind farms on land surface temperature. Nat. Clim. Chang. 2012, 2, 539–543. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, Y.; Baidya Roy, S.; Dai, Y.; Chen, H. Diurnal and seasonal variations of wind farm impacts on land surface temperature over western Texas. Clim. Dyn. 2013, 41, 307–326. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, Y.; Chen, H.; Dai, Y.; Harris, R.A. Effects of topography on assessing wind farm impacts using MODIS data. Earth Interact. 2013, 17, 1–18. [Google Scholar] [CrossRef]
- Walsh-Thomas, J.M.; Cervone, G.; Manca, G.; Agouris, P. Further evidence of impacts of large-scale wind farms on land surface temperature. Renew. Sustain. Energy Rev. 2012, 16, 6432–6437. [Google Scholar] [CrossRef]
- Harris, R.A.; Zhou, L.; Xia, G. Satellite observations of wind farm impacts on nocturnal land surface temperature in Iowa. Remote Sens. 2014, 6, 12234–12246. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory, 2014: 2013 Year End Wind Power Capacity (MW). Available online: http://apps2.eere.energy.gov/wind/windexchange/wind_installed_capacity.asp (accessed on 23 June 2015).
- Illinois State University, 2013: Wind Farms and Growth, 2013: Center for Renewable Energy. Available online: http://renewableenergy.illinoisstate.edu/041913_%20Wind_Farms_in_IL_Report_2013.pdf (accessed on 23 June 2015).
- Wan, Z. Estimate of noise and systematic error in early thermal infrared data of the Moderate Resolution Imaging Spectroradiometer (MODIS). Remote Sens. Environ. 2002, 80, 47–54. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- André, J.C.; Mahrt, L. The nocturnal surface inversion and influence of clear-air radiative cooling. J. Atmos. Sci. 1982, 39, 864–878. [Google Scholar] [CrossRef]
- Petersen, E.L.; Mortensen, N.G.; Landberg, L.; Højstrup, J.; Frank, H.P. Wind Power Meteorology; Risø National Laboratory: Roskilde, Denmark, 1997. [Google Scholar]
- Barthelmie, R.J.; Pryor, S.C.; Frandsen, S.T.; Hansen, K.S.; Schepers, J.G.; Rados, K.; Schlez, W.; Neubert, A.; Jensen, L.E.; Neckelmann, S. Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J. Atmos. Ocean. Technol. 2010, 27, 1302–1317. [Google Scholar] [CrossRef]
- General Electric Company, 2009: 1.5 MW Turbine. Available online: http://geosci.uchicago.edu/~moyer/GEOS24705/Readings/GEA14954C15-MW-Broch.pdf (accessed on 23 June 2015).
- Meyers, J.; Meneveau, C. Optimal turbine spacing in fully developed wind farm boundary layers. Wind Energy 2012, 15, 305–317. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Boston, MA, USA, 1988. [Google Scholar]
- Arya, S.P. Introduction to Micrometeorology, 2nd ed; Academic Press: London, UK, 1998; p. 420. [Google Scholar]
- Petersen, E.L.; Mortensen, N.G.; Landberg, L.; Højstrup, J.; Frank, H.P. Wind power meteorology. Part I: Climate and turbulence. Wind Energy 1998, 1, 25–45. [Google Scholar] [CrossRef]
- Archer, C.L.; Jacobson, M.Z. Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. J. Geophys. Res. 2003, 108, 1–20. [Google Scholar] [CrossRef]
- Newman, J.F.; Klein, P.M. The impacts of atmospheric stability on the accuracy of wind speed extrapolation methods. Resources 2014, 3, 81–105. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the MODIS land surface temperature/emissivity products. Remote Sens Environ. 2006, 112, 59–74. [Google Scholar] [CrossRef]
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Vose, R.S. 2007: Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region—Application to the Sahel. Proc. Natl. Acad. Sci. USA 2007, 104, 17937–17942. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Chen, H.; Dai, Y. Stronger warming amplification over drier ecoregions observed since 1979. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slawsky, L.M.; Zhou, L.; Roy, S.B.; Xia, G.; Vuille, M.; Harris, R.A. Observed Thermal Impacts of Wind Farms Over Northern Illinois. Sensors 2015, 15, 14981-15005. https://doi.org/10.3390/s150714981
Slawsky LM, Zhou L, Roy SB, Xia G, Vuille M, Harris RA. Observed Thermal Impacts of Wind Farms Over Northern Illinois. Sensors. 2015; 15(7):14981-15005. https://doi.org/10.3390/s150714981
Chicago/Turabian StyleSlawsky, Lauren M., Liming Zhou, Somnath Baidya Roy, Geng Xia, Mathias Vuille, and Ronald A. Harris. 2015. "Observed Thermal Impacts of Wind Farms Over Northern Illinois" Sensors 15, no. 7: 14981-15005. https://doi.org/10.3390/s150714981
APA StyleSlawsky, L. M., Zhou, L., Roy, S. B., Xia, G., Vuille, M., & Harris, R. A. (2015). Observed Thermal Impacts of Wind Farms Over Northern Illinois. Sensors, 15(7), 14981-15005. https://doi.org/10.3390/s150714981