Biomechanical Posture Analysis in Healthy Adults with Machine Learning: Applicability and Reliability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pose Estimation
2.2. Data Analysis
2.3. Principal Component and Clustering Analyses Methods
3. Results
3.1. Test–Retest Reliability
3.2. Principal Component Analysis and Clustering Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Postural Parameter | Function Calculation |
---|---|
Body joints (°) | |
Shoulder abduction/adduction angle | Angle between the hip, shoulder and elbow keypoints +. |
Elbow flexion/extension angle | Angle between the shoulder, elbow and wrist keypoints +. |
Hipabduction/adduction angle | Angle between the shoulder, hip and knee keypoints +. |
Kneevarus/valgus angle | Angle between the hip, knee and ankle keypoints +. |
Hip flexion/extension angle | Angle between the shoulder, hip and knee keypoints ++. |
Knee flexion/extension angle | Angle between the hip, knee and ankle keypoints ++. |
Ankle flexion/extension angle | Angle between the knee, ankle and foot index keypoints ++. |
Horizontal inclinations (°) | |
Ears line | Angle between an horizontal vector passing for one keypoint and a vector connecting the two ears keypoints +. |
Shoulders line | Angle between an horizontal vector passing for one keypoint and a vector connecting the two shoulders keypoints +. |
Elbows line | Angle between an horizontal vector passing for one keypoint and a vector connecting the two elbows keypoints +. |
Wrists line | Angle between an horizontal vector passing for one keypoint and a vector connecting the two wrists keypoints +. |
Hips line | Angle between an horizontal vector passing for one keypoint and a vector connecting the two hips keypoints +. |
Knees line | Angle between an horizontal vector passing for one keypoint and a vector connecting the two knees keypoints +. |
Ankles line | Angle between an horizontal vector passing for one keypoint and a vector connecting the two ankles keypoints +. |
Vertical inclinations (°) | |
Neck inclination | Angle between a vertical vector passing for the shoulders midpoint and a vector connecting the shoulders and ears midpoints ++. |
Trunk forward inclination | Angle between a vertical vector passing for the hips midpoint and a vector connecting the hip and shoulder midpoints ++. |
Body imbalance | Angle between a vertical vector passing for the hips midpoint and a vector connecting the hip and shoulder midpoints +. |
Leg inclination | Angle between a vertical vector passing for one keypoint and a vector connecting the hip and knee keypoints ++. |
Vectors length (pds) | |
Shoulders-hips difference | Difference between the vector connecting the two shoulders and the two hips keypoints +. |
Torso vector | Length of the vector connecting the hip and shoulder keypoints +. |
Total arm vector | Sum of the upper and lower arm vectors. |
Total leg vector | Sum of the thigh and shank vectors. |
References
- Ferreira, M.L.; de Luca, K.; Haile, L.M.; Steinmetz, J.D.; Culbreth, G.T.; Cross, M.; A Kopec, J.; Ferreira, P.H.; Blyth, F.M.; Buchbinder, R.; et al. Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e316–e329. [Google Scholar] [CrossRef] [PubMed]
- Roggio, F.; Ravalli, S.; Maugeri, G.; Bianco, A.; Palma, A.; Di Rosa, M.; Musumeci, G. Technological advancements in the analysis of human motion and posture management through digital devices. World J. Orthop. 2021, 12, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Corazza, S.; Mündermann, L.; Gambaretto, E.; Ferrigno, G.; Andriacchi, T.P. Markerless Motion Capture through Visual Hull, Articulated ICP and Subject Specific Model Generation. Int. J. Comput. Vis. 2010, 87, 156–169. [Google Scholar] [CrossRef]
- Trovato, B.; Roggio, F.; Sortino, M.; Zanghì, M.; Petrigna, L.; Giuffrida, R.; Musumeci, G. Postural Evaluation in Young Healthy Adults through a Digital and Reproducible Method. J. Funct. Morphol. Kinesiol. 2022, 7, 98. [Google Scholar] [CrossRef]
- Belli, G.; Toselli, S.; Mauro, M.; Maietta Latessa, P.; Russo, L. Relation between Photogrammetry and Spinal Mouse for Sagittal Imbalance Assessment in Adolescents with Thoracic Kyphosis. J. Funct. Morphol. Kinesiol. 2023, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Petri, G.; Ibáñez-Marcelo, E.; Osis, S.T.; Ferber, R. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions. J. Med. Biol. Eng. 2018, 38, 244–260. [Google Scholar] [CrossRef] [PubMed]
- Begg, R.; Kamruzzaman, J. Neural networks for detection and classification of walking pattern changes due to ageing. Australas. Phys. Eng. Sci. Med. 2006, 29, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Wahid, F.; Begg, R.K.; Hass, C.J.; Halgamuge, S.; Ackland, D.C. Classification of Parkinson’s Disease Gait Using Spatial-Temporal Gait Features. IEEE J. Biomed. Health Inform. 2015, 19, 1794–1802. [Google Scholar] [CrossRef]
- Lau, H.-y.; Tong, K.-y.; Zhu, H. Support vector machine for classification of walking conditions of persons after stroke with dropped foot. Hum. Mov. Sci. 2009, 28, 504–514. [Google Scholar] [CrossRef]
- Laroche, D.; Tolambiya, A.; Morisset, C.; Maillefert, J.F.; French, R.M.; Ornetti, P.; Thomas, E. A classification study of kinematic gait trajectories in hip osteoarthritis. Comput. Biol. Med. 2014, 55, 42–48. [Google Scholar] [CrossRef]
- Zhang, Z.; Hong, R.; Lin, A.; Su, X.; Jin, Y.; Gao, Y.; Peng, K.; Li, Y.; Zhang, T.; Zhi, H.; et al. Automated and accurate assessment for postural abnormalities in patients with Parkinson’s disease based on Kinect and machine learning. J. Neuroeng. Rehabil. 2021, 18, 169. [Google Scholar] [CrossRef] [PubMed]
- Dindorf, C.; Ludwig, O.; Simon, S.; Becker, S.; Fröhlich, M. Machine Learning and Explainable Artificial Intelligence Using Counterfactual Explanations for Evaluating Posture Parameters. Bioengineering 2023, 10, 511. [Google Scholar] [CrossRef] [PubMed]
- Fedorak, C.; Ashworth, N.; Marshall, J.; Paull, H. Reliability of the Visual Assessment of Cervical and Lumbar Lordosis: How Good Are We? Spine 2003, 28, 1857–1859. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.Y.; Zheng, J.X.; Sam, N.B.; Xu, S.; Shuai, Z.; Pan, F. Global burden and risk factors of musculoskeletal disorders among adolescents and young adults in 204 countries and territories, 1990–2019. Autoimmun. Rev. 2023, 22, 103361. [Google Scholar] [CrossRef] [PubMed]
- Bazarevsky, V.; Grishchenko, I.; Raveendran, K.; Zhu, T.; Zhang, F.; Grundmann, M. Blazepose: On-device real-time body pose tracking. arXiv 2020, arXiv:2006.10204. [Google Scholar]
- Cao, Z.; Simon, T.; Wei, S.-E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Papandreou, G.; Zhu, T.; Kanazawa, N.; Toshev, A.; Tompson, J.; Bregler, C.; Murphy, K. Towards accurate multi-person pose estimation in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4903–4911. [Google Scholar]
- Güney, G.; Jansen, T.S.; Dill, S.; Schulz, J.B.; Dafotakis, M.; Hoog Antink, C.; Braczynski, A.K. Video-Based Hand Movement Analysis of Parkinson Patients before and after Medication Using High-Frame-Rate Videos and MediaPipe. Sensors 2022, 22, 7992. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Bai, H.; Zhu, Z. Intelligent Evaluation Method of Human Cervical Vertebra Rehabilitation Based on Computer Vision. Sensors 2023, 23, 3825. [Google Scholar] [CrossRef]
- Fernández, M.M.; Fernández, J.Á.; Bajo, J.M.; Delrieux, C. Ergonomic risk assessment based on computer vision and machine learning. Comput. Ind. Eng. 2020, 149, 106816. [Google Scholar]
- Binish Zahra, S.; Adnan Khan, M.; Abbas, S.; Masood Khan, K.; Al Ghamdi, M.A.; Almotiri, S.H. Marker-based and Marker-less Motion Capturing Video Data: Person & Activity Identification Comparison Based on Machine Learning Approaches. Comput. Mater. Contin. 2021, 66, 1269–1282. [Google Scholar] [CrossRef]
- Kaur, R.; Motl, R.W.; Sowers, R.; Hernandez, M.E. A Vision-Based Framework for Predicting Multiple Sclerosis and Parkinson’s Disease Gait Dysfunctions-A Deep Learning Approach. IEEE J. Biomed. Health Inform. 2023, 27, 190–201. [Google Scholar] [CrossRef]
- Lugaresi, C.; Tang, J.; Nash, H.; McClanahan, C.; Uboweja, E.; Hays, M.; Zhang, F.; Chang, C.-L.; Yong, M.G.; Lee, J. Mediapipe: A framework for building perception pipelines. arXiv 2019, arXiv:1906.08172. [Google Scholar]
- Singhal, R.; Modi, H.; Srihari, S.; Gandhi, A.; Prakash, C.O.; Eswaran, S. Body Posture Correction and Hand Gesture Detection Using Federated Learning and Mediapipe. In Proceedings of the 2023 2nd International Conference for Innovation in Technology (INOCON), Bangalore, India, 3–5 March 2023; pp. 1–6. [Google Scholar]
- Grishchenko, I.; Bazarevsky, V.; Bazavan, E.G.; Na, L.; Mayes, J. 3D Pose Detection with MediaPipe BlazePose GHUM and TensorFlow.js. Available online: https://blog.tensorflow.org/2021/08/3d-pose-detection-with-mediapipe-blazepose-ghum-tfjs.html (accessed on 25 March 2024).
- Lafayette, T.B.d.G.; Kunst, V.H.d.L.; Melo, P.V.d.S.; Guedes, P.d.O.; Teixeira, J.M.X.N.; Vasconcelos, C.R.d.; Teichrieb, V.; da Gama, A.E.F. Validation of Angle Estimation Based on Body Tracking Data from RGB-D and RGB Cameras for Biomechanical Assessment. Sensors 2023, 23, 3. [Google Scholar] [CrossRef]
- Das, K.; de Paula Oliveira, T.; Newell, J. Comparison of markerless and marker-based motion capture systems using 95% functional limits of agreement in a linear mixed-effects modelling framework. Sci. Rep. 2023, 13, 22880. [Google Scholar] [CrossRef]
- Supanich, W.; Kulkarineetham, S.; Sukphokha, P.; Wisarnsart, P. Machine Learning-Based Exercise Posture Recognition System Using MediaPipe Pose Estimation Framework. In Proceedings of the 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 17–18 March 2023; pp. 2003–2007. [Google Scholar]
- Lin, Y.; Jiao, X.; Zhao, L. Detection of 3D Human Posture Based on Improved Mediapipe. J. Comput. Commun. 2023, 11, 102–121. [Google Scholar] [CrossRef]
- Federolf, P.; Tecante, K.; Nigg, B. A holistic approach to study the temporal variability in gait. J. Biomech. 2012, 45, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Federolf, P.A.; Boyer, K.A.; Andriacchi, T.P. Application of principal component analysis in clinical gait research: Identification of systematic differences between healthy and medial knee-osteoarthritic gait. J. Biomech. 2013, 46, 2173–2178. [Google Scholar] [CrossRef] [PubMed]
- Federolf, P.A. A novel approach to study human posture control: “Principal movements” obtained from a principal component analysis of kinematic marker data. J. Biomech. 2016, 49, 364–370. [Google Scholar] [CrossRef]
- Pradhan, G.; Prabhakaran, B. Clustering of human motions based on feature-level fusion of multiple body sensor data. In Proceedings of the 1st ACM International Health Informatics Symposium, Arlington, VA, USA, 11–12 November 2010; pp. 66–75. [Google Scholar]
- Hermez, L.; Halimi, A.; Houmani, N.; Garcia-Salicetti, S.; Galarraga, O.; Vigneron, V. Clinical Gait Analysis: Characterizing Normal Gait and Pathological Deviations Due to Neurological Diseases. Sensors 2023, 23, 6566. [Google Scholar] [CrossRef]
- Sidarta, A.; Komar, J.; Ostry, D.J. Clustering analysis of movement kinematics in reinforcement learning. J. Neurophysiol. 2022, 127, 341–353. [Google Scholar] [CrossRef]
- Emery, C.A. Considering cluster analysis in sport medicine and injury prevention research. Clin. J. Sport. Med. 2007, 17, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Saiki, Y.; Kabata, T.; Ojima, T.; Kajino, Y.; Kubo, N.; Tsuchiya, H. Reliability and validity of pose estimation algorithm for measurement of knee range of motion after total knee arthroplasty. Bone Jt. Res. 2023, 12, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Kendall, F.P.; McCreary, E.K.; Provance, P.G.; Crosby, R.W.; Andrews, P.J.; Krause, C. Muscles, Testing and Function: With Posture and Pain, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1993. [Google Scholar]
- Bazarevsky, V.; Grishchenko, I. On-Device, Real-Time Body Pose Tracking with MediaPipe BlazePose. Available online: https://blog.research.google/2020/08/on-device-real-time-body-pose-tracking.html (accessed on 25 March 2024).
- Smart, L.J., Jr.; Smith, D.L. Postural dynamics: Clinical and empirical implications. J. Manip. Physiol. Ther. 2001, 24, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, A.; Melnikov, A.; Skvortsov, D.; Akhmerova, K.; Vavaev, A.; Golov, A.; Draugelite, V.; Nikolaev, R.; Chechelnickaia, S.; Zhuk, D. Postural stability in athletes: The role of sport direction. Gait Posture 2021, 89, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.J.; Teizer, J. Real-time construction worker posture analysis for ergonomics training. Adv. Eng. Inform. 2012, 26, 439–455. [Google Scholar] [CrossRef]
- Yu, Q.; Huang, H.; Zhang, Z.; Hu, X.; Li, W.; Li, L.; Chen, M.; Liang, Z.; Lo, W.L.A.; Wang, C. The association between pelvic asymmetry and non-specific chronic low back pain as assessed by the global postural system. BMC Musculoskelet. Disord. 2020, 21, 596. [Google Scholar] [CrossRef] [PubMed]
- Tasseel-Ponche, S.; Yelnik, A.P.; Bonan, I.V. Motor strategies of postural control after hemispheric stroke. Neurophysiol. Clin. 2015, 45, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.; Brock, K.; Morgan, P. Postural asymmetry in non-ambulant adults with cerebral palsy: A scoping review. Disabil. Rehabil. 2019, 41, 1079–1088. [Google Scholar] [CrossRef]
- Beretta, V.S.; Barbieri, F.A.; Orcioli-Silva, D.; Dos Santos, P.C.R.; Simieli, L.; Vitório, R.; Gobbi, L.T.B. Can Postural Control Asymmetry Predict Falls in People With Parkinson’s Disease? Motor Control 2018, 22, 449–461. [Google Scholar] [CrossRef]
- Prowse, A.; Pope, R.; Gerdhem, P.; Abbott, A. Reliability and validity of inexpensive and easily administered anthropometric clinical evaluation methods of postural asymmetry measurement in adolescent idiopathic scoliosis: A systematic review. Eur. Spine J. 2016, 25, 450–466. [Google Scholar] [CrossRef]
- Roggio, F.; Petrigna, L.; Trovato, B.; Zanghì, M.; Sortino, M.; Vitale, E.; Rapisarda, L.; Testa, G.; Pavone, V.; Pavone, P.; et al. Thermography and rasterstereography as a combined infrared method to assess the posture of healthy individuals. Sci. Rep. 2023, 13, 4263. [Google Scholar] [CrossRef] [PubMed]
- Tierney, R.T.; Sitler, M.R.; Swanik, C.B.; Swanik, K.A.; Higgins, M.; Torg, J. Gender differences in head-neck segment dynamic stabilization during head acceleration. Med. Sci. Sports Exerc. 2005, 37, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Nakano, N.; Sakura, T.; Ueda, K.; Omura, L.; Kimura, A.; Iino, Y.; Fukashiro, S.; Yoshioka, S. Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose With Multiple Video Cameras. Front. Sports Act. Living 2020, 2, 50. [Google Scholar] [CrossRef] [PubMed]
- Zago, M.; Luzzago, M.; Marangoni, T.; De Cecco, M.; Tarabini, M.; Galli, M. 3D Tracking of Human Motion Using Visual Skeletonization and Stereoscopic Vision. Front. Bioeng. Biotechnol. 2020, 8, 181. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.; Fialho, R.; Teles, A.S.; Bordalo, V.; Vasconcelos, S.S.; Gouveia, G.P.d.M.; Bastos, V.H.; Teixeira, S. A computer vision-based mobile tool for assessing human posture: A validation study. Comput. Methods Programs Biomed. 2022, 214, 106565. [Google Scholar] [CrossRef] [PubMed]
- Shelton, T.J.; Nedopil, A.J.; Howell, S.M.; Hull, M.L. Do varus or valgus outliers have higher forces in the medial or lateral compartments than those which are in-range after a kinematically aligned total knee arthroplasty? limb and joint line alignment after kinematically aligned total knee arthroplasty. Bone Jt. J. 1319. [Google Scholar] [CrossRef]
- Bellemans, J.; Colyn, W.; Vandenneucker, H.; Victor, J. The Chitranjan Ranawat award: Is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin. Orthop. Relat. Res. 2012, 470, 45–53. [Google Scholar] [CrossRef]
- Hopkins, B.B.; Vehrs, P.R.; Fellingham, G.W.; George, J.D.; Hager, R.; Ridge, S.T. Validity and Reliability of Standing Posture Measurements Using a Mobile Application. J. Manip. Physiol. Ther. 2019, 42, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Needham, L.; Evans, M.; Cosker, D.P.; Wade, L.; McGuigan, P.M.; Bilzon, J.L.; Colyer, S.L. The accuracy of several pose estimation methods for 3D joint centre localisation. Sci. Rep. 2021, 11, 20673. [Google Scholar] [CrossRef] [PubMed]
- Ota, M.; Tateuchi, H.; Hashiguchi, T.; Kato, T.; Ogino, Y.; Yamagata, M.; Ichihashi, N. Verification of reliability and validity of motion analysis systems during bilateral squat using human pose tracking algorithm. Gait Posture 2020, 80, 62–67. [Google Scholar] [CrossRef]
- Saiki, Y.; Kabata, T.; Ojima, T.; Kajino, Y.; Inoue, D.; Ohmori, T.; Yoshitani, J.; Ueno, T.; Yamamuro, Y.; Taninaka, A.; et al. Reliability and validity of OpenPose for measuring hip-knee-ankle angle in patients with knee osteoarthritis. Sci. Rep. 2023, 13, 3297. [Google Scholar] [CrossRef]
- Latreche, A.; Kelaiaia, R.; Chemori, A.; Kerboua, A. Reliability and validity analysis of MediaPipe-based measurement system for some human rehabilitation motions. Measurement 2023, 214, 112826. [Google Scholar] [CrossRef]
- Hii, C.S.T.; Gan, K.B.; Zainal, N.; Mohamed Ibrahim, N.; Azmin, S.; Mat Desa, S.H.; van de Warrenburg, B.; You, H.W. Automated Gait Analysis Based on a Marker-Free Pose Estimation Model. Sensors 2023, 23, 6489. [Google Scholar] [CrossRef] [PubMed]
- Jungers, W.L.; Falsetti, A.B.; Wall, C.E. Shape, relative size, and size-adjustments in morphometrics. Am. J. Phys. Anthropol. 1995, 38, 137–161. [Google Scholar] [CrossRef]
- Olds, T.; Daniell, N.; Petkov, J.; David Stewart, A. Somatotyping using 3D anthropometry: A cluster analysis. J. Sports Sci. 2013, 31, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.E.L.; Heath, B.H. Somatotyping: Development and Applications; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Li, Y.C.; Chang, C.T.; Cheng, C.C.; Huang, Y.L. Baseball Swing Pose Estimation Using OpenPose. In Proceedings of the 2021 IEEE International Conference on Robotics, Automation and Artificial Intelligence (RAAI), Hong Kong, China, 21–23 April 2021; pp. 6–9. [Google Scholar]
- Henriquez, M.; Sumner, J.; Faherty, M.; Sell, T.; Bent, B. Machine Learning to Predict Lower Extremity Musculoskeletal Injury Risk in Student Athletes. Front. Sports Act. Living 2020, 2, 576655. [Google Scholar] [CrossRef] [PubMed]
- Giustino, V.; Messina, G.; Patti, A.; Padua, E.; Zangla, D.; Drid, P.; Battaglia, G.; Palma, A.; Bianco, A. Effects of a Postural Exercise Program on Vertical Jump Height in Young Female Volleyball Players with Knee Valgus. Int. J. Environ. Res. Public Health 2022, 19, 3953. [Google Scholar] [CrossRef] [PubMed]
- Kishore, D.M.; Bindu, S.; Manjunath, N.K. Estimation of Yoga Postures Using Machine Learning Techniques. Int. J. Yoga 2022, 15, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.; Ong, L.-Y.; Leow, M.-C. Telehealth Using PoseNet-Based System for In-Home Rehabilitation. Future Internet 2021, 13, 173. [Google Scholar] [CrossRef]
- Anıl Duman, E.; Sennaroğlu, B.; Tuzkaya, G. A cluster analysis of basketball players for each of the five traditionally defined positions. Proc. Inst. Mech. Eng. Part. P J. Sports Eng. Technol. 2024, 238, 55–75. [Google Scholar] [CrossRef]
Postural Parameters | Mean ± SD | Sig. | Effect Size (d) | ICC | SEM | MDC | ||
---|---|---|---|---|---|---|---|---|
Men | Women | |||||||
Body joints (°) | Shoulder adduction angle | 16.1 ± 1.9 | 14.1 ± 1.5 | <0.001 *** | 1.14 | 0.94 | 0.22 | 0.61 |
Elbow extension angle | 7.6 ± 3.6 | 4.4 ± 2.1 | <0.001 *** | 1.07 | 0.93 | 0.60 | 1.67 | |
Hip adduction angle | 9.9 ± 2.2 | 6.7 ± 1.5 | <0.001 *** | 1.67 | 0.95 | 0.16 | 0.45 | |
Hip extension angle | 3.4 ± 2.3 | 2.5 ± 1.7 | 0.005 ** | 0.50 | 0.78 | 0.81 | 2.25 | |
Knee varus/valgus angle | 2.6 ± 1.0 | 2.2 ± 0.9 | 0.027 * | 0.39 | 0.93 | 0.17 | 0.44 | |
Knee extension angle | 2.7 ± 1.7 | 2.7 ± 1.8 | 0.906 | 0.01 | 0.84 | 0.68 | 1.89 | |
Ankle flexion angle | 68.6 ± 5.3 | 72.9 ± 4.9 | <0.001 *** | −0.85 | 0.85 | 0.67 | 1.85 | |
Horizontal inclinations (°) | Ear line | 2.0 ± 1.5 | 2.0 ± 1.2 | 0.550 | 0.02 | 0.79 | 0.49 | 1.38 |
Shoulder line | 1.2 ± 0.7 | 1.2 ± 0.9 | 0.740 | −0.01 | 0.73 | 0.48 | 1.33 | |
Elbow line | 1.2 ± 0.9 | 1.3 ± 0.9 | 0.530 | −0.12 | 0.85 | 0.33 | 0.93 | |
Wrist line | 1.3 ± 0.9 | 1.5 ± 0.9 | 0.408 | −0.13 | 0.83 | 0.34 | 0.95 | |
Hip line | 1.2 ± 0.8 | 1.5 ± 1.0 | 0.071 | −0.34 | 0.84 | 0.36 | 1.01 | |
Knee line | 2.2 ± 1.3 | 2.1 ± 1.4 | 0.692 | 0.04 | 0.67 | 0.83 | 2.30 | |
Ankle line | 1.9 ± 1.4 | 2.0 ± 1.3 | 0.581 | −0.08 | 0.80 | 0.67 | 1.87 | |
Vertical inclinations (°) | Neck inclination | 13.6 ± 3.2 | 15.4 ± 3.3 | <0.001 *** | −0.55 | 0.93 | 0.89 | 2.47 |
Trunk forward inclination | 2.3 ± 1.4 | 1.5 ± 1.1 | <0.001 *** | 0.66 | 0.77 | 0.43 | 1.20 | |
Body imbalance | 0.9 ± 0.4 | 1.3 ± 0.6 | <0.001 *** | −0.64 | 0.90 | 0.12 | 0.35 | |
Leg inclination | 1.8 ± 0.6 | 1.8 ± 0.6 | 0.547 | −0.09 | 0.80 | 0.23 | 0.64 | |
Vectors length (pd) | Shoulder–hip difference | 83.8 ± 14.9 | 63.4 ± 13.3 | <0.001 *** | 1.44 | |||
Torso vector | 292.3 ± 26.3 | 244.7 ± 29.5 | <0.001 *** | 1.71 | ||||
Total arm vector | 297.5 ± 33.4 | 257.3 ± 32.9 | <0.001 *** | 1.21 | ||||
Total leg vector | 388.7 ± 32.4 | 358.2 ± 32.4 | <0.001 *** | 0.94 |
Postural Parameters | Mean ± SD | Sig. | Effect Size (d) | ||
---|---|---|---|---|---|
CG1 | CG2 | ||||
Body Joints (°) | Shoulder adduction angle | 14.7 ± 1.6 | 15.1 ± 2.2 | 0.112 | 0.24 |
Elbow extension angle | 4.8 ± 2.6 | 6.3 ± 3.4 | 0.001 ** | 0.50 | |
Hip adduction angle | 6.5 ± 1.6 | 9.4 ± 2.2 | <0.001 *** | 1.53 | |
Hip extension angle | 2.5 ± 1.6 | 3.2 ± 2.4 | 0.035 * | 0.36 | |
Knee varus/valgus angle | 2.3 ± 0.9 | 2.5 ± 1.0 | 0.258 | 0.19 | |
Knee extension angle | 73.1 ± 4.7 | 69.2 ± 5.5 | 0.146 | −0.24 | |
Ankle flexion angle | 14.7 ± 1.6 | 15.1 ± 2.2 | <0.001 *** | −0.78 | |
Horizontal inclinations (°) | Ear line | 2.0 ± 1.2 | 2.0 ± 1.4 | 0.89 | −0.02 |
Shoulder line | 1.3 ± 0.9 | 1.1 ± 0.7 | 0.032 * | −0.34 | |
Elbow line | 1.3 ± 1.0 | 1.2 ± 0.8 | 0.591 | −0.08 | |
Wrist line | 1.4 ± 0.9 | 1.4 ± 0.9 | 0.958 | −0.01 | |
Hip line | 1.7 ± 1.0 | 1.1 ± 0.8 | <0.001 *** | −0.64 | |
Knee line | 2.2 ± 1.4 | 2.1 ± 1.4 | 0.418 | −0.12 | |
Ankle line | 2.0 ± 1.4 | 2.0 ± 1.4 | 0.822 | 0.04 | |
Vertical inclinations (°) | Neck inclination | 15.5 ± 3.1 | 14.0 ± 3.4 | 0.006 ** | −0.46 |
Trunk forward inclination | 1.5 ± 1.1 | 2.0 ± 1.4 | 0.007 ** | 0.42 | |
Body imbalance | 1.3 ± 0.6 | 1.0 ± 0.4 | 0.004 ** | −0.51 | |
Leg inclination | 1.9 ± 0.6 | 1.7 ± 0.6 | 0.034 * | −0.31 | |
Vector length (pd) | Shoulder–hip difference | 57.5 ± 7.0 | 86.6 ± 10.7 | <0.001 *** | 3.21 |
Torso vector | 233.4 ± 16.2 | 295.9 ± 21.6 | <0.001 *** | 3.28 | |
Total arm vector | 241.2 ± 14.1 | 307.7 ± 23.4 | <0.001 *** | 3.44 | |
Total leg vector | 342.6 ± 19.4 | 400.3 ± 22.2 | <0.001 *** | 2.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roggio, F.; Di Grande, S.; Cavalieri, S.; Falla, D.; Musumeci, G. Biomechanical Posture Analysis in Healthy Adults with Machine Learning: Applicability and Reliability. Sensors 2024, 24, 2929. https://doi.org/10.3390/s24092929
Roggio F, Di Grande S, Cavalieri S, Falla D, Musumeci G. Biomechanical Posture Analysis in Healthy Adults with Machine Learning: Applicability and Reliability. Sensors. 2024; 24(9):2929. https://doi.org/10.3390/s24092929
Chicago/Turabian StyleRoggio, Federico, Sarah Di Grande, Salvatore Cavalieri, Deborah Falla, and Giuseppe Musumeci. 2024. "Biomechanical Posture Analysis in Healthy Adults with Machine Learning: Applicability and Reliability" Sensors 24, no. 9: 2929. https://doi.org/10.3390/s24092929
APA StyleRoggio, F., Di Grande, S., Cavalieri, S., Falla, D., & Musumeci, G. (2024). Biomechanical Posture Analysis in Healthy Adults with Machine Learning: Applicability and Reliability. Sensors, 24(9), 2929. https://doi.org/10.3390/s24092929