Investigating the Spatio-Temporal Variation of Soil Moisture and Agricultural Drought towards Supporting Water Resources Management in the Red River Basin of Vietnam
Abstract
:1. Introduction
2. Method and Materials
2.1. Study Area
2.2. VIC Soil Moisture Simulation
2.3. Soil Moisture Anomaly Percentage Index (SMAPI)
3. Results and Discussion
3.1. Spatio-Temporal Variation of Soil Moisture in Relation to Meteorological Variables
3.2. Relationship between Soil Moisture vs. Land Cover, Topography, and Soil Type
3.3. Spatio-Temporal Variation of SMAPI and Implications for Agroforestry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molle, F.; Hoanh, C.T. Implementing Integrated River Basin Management: Lessons from the Red River Basin, Vietnam; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2009; pp. 1–25. [Google Scholar] [CrossRef]
- Myeni, L.; Moeletsi, M.E.; Clulow, A.D. Present status of soil moisture estimation over the African continent. J. Hydrol. Reg. Stud. 2019, 21, 14–24. [Google Scholar] [CrossRef]
- Tavakoli, M.; De Smedt, F. Validation of soil moisture simulation with a distributed hydrologic model (WetSpa). Environ. Earth Sci. 2013, 69, 739–747. [Google Scholar] [CrossRef]
- Mohanty, P.; Amor, V.M.I.; Yongchul, S.; Nandita, G.; Narendra, D. Chapter 9-A Framework for Assessing Soil Moisture Deficit and Crop Water Stress at Multiple Space and Time Scales Under Climate Change Scenarios Using Model Platform, Satellite Remote Sensing, and Decision Support System. In Remote Sensing of Hydrological Extreme; Springer: Cham, Switzerland, 2017; pp. 173–196. [Google Scholar]
- Gumindoga, W.; Amon, M.; Donald, T.R.; Farayi, B.J.; Lloyd, C. The spatio-temporal soil moisture variation along the major tributaries of Zambezi River in the Mbire District, Zimbabwe. J. Hydrol. Reg. Stud. 2020, 32, 100753. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Wang, W.; Zhou, H. Propagation of soil moisture droughts in a hotspot region: Spatial pattern and temporal trajectory. J. Hydrol. 2021, 593, 125906. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Lu, G.H.; Wen, L.; Lin, C.A. Reconstructing and analyzing China’s fifty-nine year (1951–2009) drought history using hydrological model simulation. Hydrol. Earth Syst. Sci. 2011, 15, 2881–2894. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.Y.; Lu, G.H.; Wen, L.; Lin, C.A.; Zhang, J.Y.; Yang, Y. Thirty-five year (1971–2005) simulation of daily soil moisture using the variable infiltration capacity model over China. Atmosphere-Ocean 2007, 45, 37–45. [Google Scholar] [CrossRef]
- Mao, Y.; Wu, Z.; He, H.; Lu, G.; Xu, H.; Lin, Q. Spatio-temporal analysis of drought in a typical plain region based on the soil moisture anomaly percentage index. Sci. Total Environ. 2017, 576, 752–765. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Clark, E.A.; Wood, A.W.; Hamlet, A.F.; Lettenmaier, D.P. Twentieth-century century drought in the conterminous United States. J. Hydrometeorol. 2005, 6, 985–1001. [Google Scholar] [CrossRef]
- Wen, L.; Lin, C.A.; Wu, Z.Y.; Lu, G.H.; Pomeroy, J.; Zhu, Y. Reconstructing sixty year (1950–2009) daily soil moisture over the Canadian Prairies using the Variable Infiltration Capacity model. Can. Water Resour. J. 2011, 36, 83–102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wu, P.; Zhao, X.; Wang, Y.; Gao, X.; Cao, X. A drought hazard assessment index based on the VIC–PDSI model and its application on the Loess Plateau, China. Theor. Appl. Climatol. 2013, 114, 125–138. [Google Scholar] [CrossRef]
- Ma, M.; Ren, L.; Vijay, P.S.; Yuan, F.; Chen, L.; Yang, X.; Liu, Y. Hydrologic model-based Palmer indices for drought characterization in the Yellow River basin, China. Stoch. Environ. Res. Risk Assess. 2016, 30, 1401–1420. [Google Scholar] [CrossRef]
- Xu, L.; Peyman, A.; Hamid, M.; Chen, N.; Zhang, X. Continental drought monitoring using satellite soil moisture, data assimilation and an integrated drought index. Remote Sens. Environ. 2020, 250, 112028. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wen, F.; Eric, F.W. A simulated soil moisture based drought analysis for the United States. J. Geophys. Res. Atmos. 2004, 109, D24108. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, J.; Wang, X.; Cai, H.; Zhou, Z.; Sun, Y.; Shi, H. Propagation of meteorological to hydrological drought for different climate regions in China. J. Environ. Manag. 2021, 283, 111980. [Google Scholar] [CrossRef] [PubMed]
- Bergman, K.H.; Sabol, P.; Miskus, D. Experimental indices for monitoring global drought conditions. In Proceedings of the 13th Annual Climate Diagnostics Workshop; United States Department of Commerce: Cambridge, MA, USA, 1988; pp. 190–197. [Google Scholar]
- Hiep, N.H.; Luong, N.D.; Nga, T.T.V.; Hieu, B.T.; Ha, U.T.T.; Duong, B.D.; Long, V.D.; Hossain, F.; Lee, H. Hydrological model using ground- and satellite-based data for river flow simulation towards supporting water resource management in the Red River Basin, Vietnam. J. Environ. Manag. 2018, 217, 346–355. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frecuency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology; American Meteorological Society (AMS): Anaheim, CA, USA, 1993; pp. 179–184. [Google Scholar]
- Zhai, J.Q.; Su, B.D.; Krysanova, V. Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J. Clim. 2010, 23, 649–663. [Google Scholar] [CrossRef]
- Narasimhan, B.; Srinivasan, R. Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Meng, X.; Li, R.; Luan, L.; Lyu, S.; Zhang, T.; Ao, Y.; Han, B.; Zhao, L.; Ma, Y. Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau. Clim. Dyn. 2018, 51, 4157–4168. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Jia, Y.; Peng, H.; Niu, C.; Liu, J. Temperature and precipitation trends and their links with elevation in the Hengduan Mountain region, China. Clim. Res. 2018, 75, 163–180. [Google Scholar] [CrossRef]
- Forootan, E.; Khaki, M.; Schumacher, M.; Wulfmeyer, V.; Mehrnegar, N.; van Dijk, A.I.J.M.; Brocca, L.; Farzaneh, S.; Akinluyi, F.; Ramillien, G.; et al. Understanding the global hydrological droughts of 2003–2016 and their relationships with teleconnections. Sci. Total Environ. 2019, 650, 2587–2604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, N.; Zhao, H.; Li, Y.; Biswas, A.; Feng, H.; Liu, F.; Pulatov, B. National-scale variation and propagation characteristics of meteorological, agricultural, and hydrological droughts in China. Remote Sens. 2020, 12, 3407. [Google Scholar] [CrossRef]
- Javed, T.; Li, Y.; Rashid, S.; Li, F.; Hu, Q.; Feng, H.; Chen, X.; Ahmad, S.; Liu, F.; Pulatov, B. Performance and relationship of four different agricultural drought indices for drought monitoring in China’s mainland using remote sensing data. Sci. Total Environ. 2021, 759, 143530. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Liu, Y. Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin. J. Hydrol. 2015, 531, 1129–1140. [Google Scholar] [CrossRef]
- Guo, X.; Fu, Q.; Hang, Y.; Lu, H.; Gao, F.; Si, J. Spatial Variability of Soil Moisture in Relation to Land Use Types and Topographic Features on Hillslopes in the Black Soil (Mollisols) Area of Northeast China. Sustainability 2020, 12, 3552. [Google Scholar] [CrossRef]
- Liang, W.L.; Hung, F.X.; Chan, M.C.; Lu, T.H. Spatial structure of surface soil water content in a natural forested headwater catchment with a subtropical monsoon climate. J. Hydrol. 2014, 516, 210–221. [Google Scholar] [CrossRef]
- Gerrits, A.M.J.; Pfister, L.; Savenije, H.H.G. Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol. Processes 2010, 24, 3011–3025. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Rudnicki, J.W.; Rodell, M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol. 1998, 210, 259–281. [Google Scholar] [CrossRef] [Green Version]
- Western, A.W.; Zhou, S.L.; Grayson, R.B.; McMahon, T.A.; Blöschl, G.; Wilson, D.J. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol. 2004, 286, 113–134. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Revealing the relative influence of soil and topographic properties on soil water content distribution at the watershed scale in two sites. J. Hydrol. 2014, 516, 107–118. [Google Scholar] [CrossRef]
- Cantón, Y.; Solé-Benet, A.; Domingo, F. Temporal and spatial patterns of soil moisture in semiarid badlands of SE Spain. J. Hydrol. 2004, 285, 199–214. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Skaggs, T.H. Spatio-temporal evolution and time stable characteristics of soil moisture within remote sensing footprints with varying soils, slopes, and vegetation. Adv. Water Resour. 2001, 24, 1051–1067. [Google Scholar] [CrossRef]
- Jacobs, J.M.; Mohanty, B.P.; Hsu, E.C.; Miller, D. Field scale variability and similarity of soil moisture during SMEX02. Remote Sens. Environ. 2004, 92, 436–446. [Google Scholar] [CrossRef]
- Joshi, C.; Mohanty, B.P. Physical controls of near-surface soil moisture across varying spatial scales in an agricultural landscape during SMEX02. Water Resour. Res. 2010, 46, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Joshi, C.; Mohanty, B.P.; Jacobs, J.M.; Ines, A.V.M. Spatiotemporal analyses of soil moisture from point to footprint scale in two different hydroclimatic regions. Water Resour. Res. 2011, 47, W01508. [Google Scholar] [CrossRef]
- O’Geen, A.T. Soil Water Dynamics. Nat. Educ. Knowl. 2013, 4, 9. [Google Scholar]
- Mohanty, B.P.; Zhu, J. Effective hydraulic parameters in horizontally and vertically heterogeneous soils for steady-state land–atmosphere interaction. J. Hydrometeorol. 2007, 8, 715–729. [Google Scholar] [CrossRef]
- Zhang, W.; An, S.; Xu, Z.; Cui, J.; Xu, Q. The impact of vegetation and soil on runoff regulation in headwater streams on the east Qinghai–Tibet Plateau, China. Catena 2011, 87, 182–189. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, X.; Sun, P.; Liu, S. The effect of forest harvesting and climatic variability on runoff in a large watershed: The case study in the Upper Minjiang River of Yangtze River basin. J. Hydrol. 2012, 464–465, 1–11. [Google Scholar] [CrossRef]
- Nicolai-Shaw, N.; Zscheischler, J.; Hirschi, M.; Gudmundsson, L.; Seneviratne, S.I. A drought event composite analysis using satellite remote-sensing based soil moisture. Remote Sens. Environ. 2017, 203, 216–225. [Google Scholar] [CrossRef]
- Miyata, S.; Gomi, T.; Roy, C.S.; Hiraoka, M.; Onda, Y.; Yamamoto, K.; Nonoda, T. Assessing spatially distributed infiltration capacity to evaluate storm runoff in forested catchments: Implications for hydrological connectivity. Sci. Total Environ. 2019, 669, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Aryal, Y.; Zhu, J. Multimodel ensemble projection of meteorological drought scenarios and connection with climate based on spectral analysis. Int. J. Climatol. 2020, 40, 3360–3379. [Google Scholar] [CrossRef]
- Cao, R.; Jia, X.; Huang, L.; Zhu, Y.; Wu, L.; Shao, M. Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China. Sci. Rep. 2018, 8, 12346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, P.; Zhang, Y.; Ren, Z.; Yu, Y.; Li, P.; Gong, J. Land-use changes and check dams reducing runoff and sediment yield on the Loess Plateau of China. Sci. Total Environ. 2019, 664, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, L.; Chang, J.; Wang, Y.; Guo, A.; Fan, J.; Liu, Q. Hydrological drought evolution with a nonlinear joint index in regions with significant changes in underlying surface. J. Hydrol. 2020, 585, 124794. [Google Scholar] [CrossRef]
- Dash, S.S.; Sahoo, B.; Raghuwanshi, N.S. How reliable are the evapotranspiration estimates by Soil and Water Assessment Tool (SWAT) and Variable Infiltration Capacity (VIC) models for catchment-scale drought assessment and irrigation planning? J. Hydrol. 2021, 592, 125838. [Google Scholar] [CrossRef]
Category | Description | SMAPI Range |
---|---|---|
D4 | Extreme drought | ≤−0.50 |
D3 | Severe drought | −0.50 to −0.30 |
D2 | Moderate drought | −0.30 to −0.15 |
D1 | Mild drought | −0.15 to −0.05 |
N | Near normal | −0.05 to 0.05 |
W1 | Slightly wet | 0.05 to 0.15 |
W2 | Moderately wet | 0.15 to 0.30 |
W3 | Very wet | 0.30 to 0.50 |
W4 | Extremely wet | ≥0.50 |
Land Cover Types | Area (%) | Dry Season | Wet Season | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D4 | D3 | D2 | D1 | N | W1 | W2 | W3 | W4 | D4 | D3 | D2 | D1 | N | W1 | W2 | W3 | W4 | ||
Urban and Built-Up Land | 0.14 | - | - | - | 0.07 | - | - | 0.07 | - | - | - | - | - | 0.07 | - | 0.07 | - | - | - |
Water Bodies | 0.65 | - | 0.07 | - | 0.14 | - | 0.36 | 0.07 | - | - | - | 0.07 | - | 0.07 | 0.29 | 0.22 | - | - | - |
Herbaceous Wetland | 0.14 | - | - | - | - | - | 0.07 | 0.07 | - | - | - | - | - | - | - | 0.07 | 0.07 | - | - |
Dryland Cropland and Pasture | 0.43 | - | - | - | 0.14 | - | 0.29 | - | - | - | - | - | - | 0.21 | - | 0.22 | - | - | - |
Irrigated Cropland and Pasture | 15.78 | - | 0.29 | - | 1.58 | 4.45 | 3.01 | 3.52 | 2.08 | 0.86 | - | 0.29 | - | 1.65 | 4.45 | 4.73 | 4.66 | - | - |
Cropland/Grassland Mosaic | 15.49 | - | 0.22 | - | 2.22 | 3.37 | 3.66 | 4.73 | 1.22 | 0.07 | - | 0.22 | - | 1.22 | 3.23 | 6.1 | 4.73 | - | - |
Cropland/Woodland Mosaic | 0.29 | - | - | - | - | - | 0.22 | - | 0.07 | - | - | - | - | - | 0.22 | 0.07 | - | - | |
Grassland | 1.36 | - | - | - | 0.22 | 0.29 | 0.22 | 0.43 | 0.14 | 0.07 | - | - | - | - | 0.65 | 0.43 | 0.29 | - | - |
Shrubland | 17.58 | - | 5.38 | - | 3.37 | 1.29 | 2.94 | 4.45 | 0.14 | - | - | 5.45 | - | 3.52 | 1.94 | 5.09 | 1.51 | 0.07 | - |
Savanna | 3.59 | - | 0.36 | - | 0.57 | 1.36 | 0.36 | 0.86 | 0.07 | - | - | 0.36 | - | 0.57 | 0.65 | 1.43 | 0.57 | - | |
Deciduous Broadleaf Forest | 6.6 | - | 0.65 | - | 3.01 | 1.94 | 0.5 | 0.5 | - | - | - | 0.72 | - | 0.72 | 2.87 | 1.79 | 0.43 | 0.07 | - |
Evergreen Broadleaf Forest | 11.76 | - | 1.51 | - | 3.95 | 4.45 | 1 | 0.86 | - | - | - | 1.51 | - | 2.15 | 2.94 | 4.02 | 0.86 | 0.29 | - |
Evergreen Needleleaf Forest | 0.43 | - | 0.22 | - | 0.14 | - | 0.07 | - | - | - | - | 0.22 | - | 0.14 | 0.07 | - | - | - | - |
Mixed Forest | 25.75 | - | 2.3 | - | 8.18 | 9.47 | 3.3 | 2.51 | - | - | - | 2.37 | - | 4.16 | 11.91 | 5.74 | 1.43 | 0.14 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luong, N.D.; Hiep, N.H.; Bui, T.H. Investigating the Spatio-Temporal Variation of Soil Moisture and Agricultural Drought towards Supporting Water Resources Management in the Red River Basin of Vietnam. Sustainability 2021, 13, 4926. https://doi.org/10.3390/su13094926
Luong ND, Hiep NH, Bui TH. Investigating the Spatio-Temporal Variation of Soil Moisture and Agricultural Drought towards Supporting Water Resources Management in the Red River Basin of Vietnam. Sustainability. 2021; 13(9):4926. https://doi.org/10.3390/su13094926
Chicago/Turabian StyleLuong, Nguyen Duc, Nguyen Hoang Hiep, and Thi Hieu Bui. 2021. "Investigating the Spatio-Temporal Variation of Soil Moisture and Agricultural Drought towards Supporting Water Resources Management in the Red River Basin of Vietnam" Sustainability 13, no. 9: 4926. https://doi.org/10.3390/su13094926
APA StyleLuong, N. D., Hiep, N. H., & Bui, T. H. (2021). Investigating the Spatio-Temporal Variation of Soil Moisture and Agricultural Drought towards Supporting Water Resources Management in the Red River Basin of Vietnam. Sustainability, 13(9), 4926. https://doi.org/10.3390/su13094926