A Solvable Algebra for Massless Fermions
Abstract
:1. Introduction
1.1. Analysis of Wigner’s Little Group
1.2. Justification of the Extension
2. The Borel Subgroup
A Bridge from Massive to Massless
3. Common (Pseudo)eigenvectors
Generating the (Pseudo)eigenvectors
4. Kronecker Sum of Solvable Algebras
4.1. Weyl’s Unitary Trick
4.2. Duplication and Complexification
4.3. Compactified and Decompactified Real Forms
4.4. In Search of Left and Right
4.5. The Irreducible Representation
5. The Chevalley Basis
5.1. Common Eigenvectors
5.2. Induced Lorentz Transformations
5.3. Representations of the Proper Orthochronous Lorentz Group
5.4. Helicity
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, T.D.; Nauenberg, M. Degenerate Systems and Mass Singularities. Phys. Rev. 1964, 133, B1549–B1562. [Google Scholar] [CrossRef]
- Jadach, S.; Was, Z. QED O(α3) radiative corrections to the reaction e+e−→τ+τ− including spin and mass effects. Acta Phys. Pol. B 1984, 15, 1151, Erratum in Acta Phys. Pol. 1985, 16, 483. [Google Scholar]
- Kleiss, R. Hard Bremsstrahlung Amplitudes for e+e− Collisions With Polarized Beams at LEP/SLC Energies. Z. Phys. C 1987, 33, 433. [Google Scholar] [CrossRef]
- Jadach, S.; Kühn, J.H.; Stuart, R.G.; Was, Z. QCD and QED Corrections to the Longitudinal Polarization Asymmetry. Z. Phys. C 1988, 38, 609, Erratum in Z. Phys. C 1990, 45, 528. [Google Scholar] [CrossRef]
- Smilga, A.V. Quasiparadoxes of massless QED. Comments Nucl. Part. Phys. 1991, 20, 69–84. [Google Scholar]
- Contopanagos, H.F.; Einhorn, M.B. Physical consequences of mass singularities. Phys. Lett. B 1992, 277, 345–352. [Google Scholar] [CrossRef]
- Falk, B.; Sehgal, L.M. Helicity flip bremsstrahlung: An Equivalent particle description with applications. Phys. Lett. B 1994, 325, 509–516. [Google Scholar] [CrossRef]
- Körner, J.G.; Pilaftsis, A.; Tung, M.M. One Loop QCD Mass effects in the production of polarized bottom and top quarks. Z. Phys. C 1994, 63, 575–579. [Google Scholar] [CrossRef]
- Groote, S.; Körner, J.G.; Tung, M.M. Polar angle dependence of the alignment polarization of quarks produced in e+e− annihilation. Z. Phys. C 1997, 74, 615–629. [Google Scholar] [CrossRef]
- Dittmaier, S.; Kaiser, A. Photonic and QCD radiative corrections to Higgs boson production in μ+μ−→f. Phys. Rev. D 2002, 65, 113003. [Google Scholar] [CrossRef]
- Groote, S.; Körner, J.G.; Leyva, J.A. O(αs) corrections to the polar angle dependence of the longitudinal spin-spin correlation asymmetry in e+e−→q. Eur. Phys. J. C 2009, 63, 391–406, Erratum in Eur. Phys. J. C 2014, 74, 2789. [Google Scholar] [CrossRef]
- Poincaré, H. Sur la dynamique de l’électron. Rend. Del. Circ. Mat. Palermo 1906, 21, 129–176. [Google Scholar] [CrossRef]
- Borel, A. Groupes linéaires algébriques. Ann. Math. 1956, 64, 20. [Google Scholar] [CrossRef]
- Inonu, E.; Wigner, E.P. On the contraction of groups and their representations. Proc. Natl. Acad. Sci. USA 1953, 39, 510–524. [Google Scholar] [CrossRef]
- Bäuerle, G.G.A.; de Kerf, E.A. Lie Algebras, Part 1: Finite and Infinite Dimensional Lie Algebras and Applications in Physics; North Holland: New York, NY, USA, 1990. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons: New York, NY, USA, 1962. [Google Scholar]
- Ida, N. Engineering Electrodynamics; Springer: New York, NY, USA, 2000. [Google Scholar]
- Saar, R.; Groote, S. Mass, zero mass and … nophysics. Adv. Appl. Clifford Algebr. 2017, 27, 2739–2768. [Google Scholar] [CrossRef]
- Choi, T.; Cho, S.Y. Spin operators and representations of the Poincaré group. arXiv 2018, arXiv:1807.06425. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groote, S.; Saar, R. A Solvable Algebra for Massless Fermions. Symmetry 2024, 16, 97. https://doi.org/10.3390/sym16010097
Groote S, Saar R. A Solvable Algebra for Massless Fermions. Symmetry. 2024; 16(1):97. https://doi.org/10.3390/sym16010097
Chicago/Turabian StyleGroote, Stefan, and Rein Saar. 2024. "A Solvable Algebra for Massless Fermions" Symmetry 16, no. 1: 97. https://doi.org/10.3390/sym16010097
APA StyleGroote, S., & Saar, R. (2024). A Solvable Algebra for Massless Fermions. Symmetry, 16(1), 97. https://doi.org/10.3390/sym16010097