On Multiple-Type Wave Solutions for the Nonlinear Coupled Time-Fractional Schrödinger Model
Abstract
:1. Introduction
2. Conformable Derivative
- 1.
- , for all .
- 2.
- , for all .
- 3.
- , if is constant function.
- 4.
- .
- 5.
- .
- 6.
- .
- 7.
- .
3. Analytical Investigation
3.1. Application of the SSET
3.2. Application of the IGTHFT
4. Results and Discussions
- Bright Soliton Solutions:
- –
- Bright Periodic Singular Soliton Solutions:
- –
- –
- Singular Bell-Shaped Soliton Solutions:
- –
- Dark Soliton Solutions:
- –
- Dark Periodic Singular Soliton Solutions:
- –
- –
- Solitary Wave Solutions:
- –
- –
- –
- Singular Kink Fusion Solitary Wave Solutions:
- –
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zulfiqar, A.; Ahmad, J. Soliton solutions of fractional modified unstable Schrödinger equation using Exp-function method. Results Phys. 2020, 19, 103476. [Google Scholar] [CrossRef]
- Fatima, M.; Agarwal, R.P.; Abbas, M.; Mohammed, P.O.; Shafiq, M.; Chorfi, N. Extension of Cubic B-Spline for Solving the Time-Fractional Allen–Cahn Equation in the Context of Mathematical Physics. Computation 2024, 12, 51. [Google Scholar] [CrossRef]
- Ehsan, H.; Abbas, M.; Nazir, T.; Mohammed, P.O.; Chorfi, N.; Baleanu, D. Efficient analytical algorithms to study Fokas dynamical models involving M-truncated derivative. Qual. Theory Dyn. Syst. 2024, 23, 49. [Google Scholar] [CrossRef]
- Yousaf, M.Z.; Srivastava, H.M.; Abbas, M.; Nazir, T.; Mohammed, P.O.; Vivas-Cortez, M.; Chorfi, N. A Novel Quintic B-Spline Technique for Numerical Solutions of the Fourth-Order Singular Singularly-Perturbed Problems. Symmetry 2023, 15, 1929. [Google Scholar] [CrossRef]
- Wang, K.J. Variational principle and diverse wave structures of the modified Benjamin-Bona-Mahony equation arising in the optical illusions field. Axioms 2022, 11, 445. [Google Scholar] [CrossRef]
- Zulfiqar, A.; Ahmad, J.; Ul-Hassan, Q.M. Analysis of some new wave solutions of fractional order generalized Pochhammer-chree equation using exp-function method. Opt. Quantum Electron. 2022, 54, 735. [Google Scholar] [CrossRef]
- Islam, S.R.; Arafat, S.Y.; Wang, H. Abundant closed-form wave solutions to the simplified modified Camassa-Holm equation. J. Ocean Eng. Sci. 2022, 8, 238–245. [Google Scholar] [CrossRef]
- Shakeel, M.; El-Zahar, E.R.; Shah, N.A.; Chung, J.D. Generalized Exp-Function Method to Find Closed Form Solutions of Nonlinear Dispersive Modified Benjamin–Bona–Mahony Equation Defined by Seismic Sea Waves. Mathematics 2022, 10, 1026. [Google Scholar] [CrossRef]
- Joseph, S.P. Exact Traveling Wave Doubly Periodic Solutions for Generalized Double Sine-Gordon Equation. Int. J. Appl. Comput. Math. 2022, 8, 42. [Google Scholar] [CrossRef]
- Athron, P.; Fowlie, A.; Lu, C.T.; Wu, L.; Wu, Y.; Zhu, B. Hadronic Uncertainties versus New Physics for the W boson Mass and Muon g-2 Anomalies. Nat. Commun. 2023, 14, 659. [Google Scholar] [CrossRef]
- Seidel, A. Integral Approach for Hybrid Manufacturing of Large Structural Titanium Space Components. Ph.D. Thesis, Dresden University of Technology, Dresden, Germany, 2022. [Google Scholar]
- Saifullah, S.; Ahmad, S.; Alyami, M.A.; Inc, M. Analysis of interaction of lump solutions with kink-soliton solutions of the generalized perturbed KdV equation using Hirota-bilinear approach. Phys. Lett. A 2022, 454, 128503. [Google Scholar] [CrossRef]
- Liu, S.Z.; Wang, J.; Zhang, D.J. The Fokas–Lenells equations: Bilinear approach. Stud. Appl. Math. 2022, 148, 651–688. [Google Scholar] [CrossRef]
- Khater, M.M. Prorogation of waves in shallow water through unidirectional Dullin-Gottwald-Holm model; computational simulations. Int. J. Mod. Phys. B 2022, 37, 2350071. [Google Scholar] [CrossRef]
- Muniyappan, A.; Sahasraari, L.N.; Anitha, S.; Ilakiya, S.; Biswas, A.; Yıldırım, Y.; Triki, H.; Alshehri, H.M.; Belic, M.R. Family of optical solitons for perturbed Fokas–Lenells equation. Optik 2022, 249, 168224. [Google Scholar] [CrossRef]
- Zhang, T.; Li, M.; Chen, J.; Wang, Y.; Miao, L.; Lu, Y.; He, Y. Multi-component ZnO alloys: Bandgap engineering, hetero-structures, and optoelectronic devices. Mater. Sci. Eng. R Rep. 2022, 147, 100661. [Google Scholar] [CrossRef]
- Mahmood, A.; Srivastava, H.M.; Abbas, M.; Abdullah, F.A.; Mohammed, P.O.; Baleanu, D.; Chorfi, N. Optical soliton solutions of the coupled Radhakrishnan-Kundu-Lakshmanan equation by using the extended direct algebraic approach. Heliyon 2023, 9, e20852. [Google Scholar] [CrossRef] [PubMed]
- Min, R.; Hu, X.; Pereira, L.; Soares, M.S.; Silva, L.C.; Wang, G.; Martins, L.; Qu, H.; Antunes, P.; Marques, C.; et al. Polymer optical fiber for monitoring human physiological and body function: A comprehensive review on mechanisms, materials, and applications. Opt. Laser Technol. 2022, 147, 107626. [Google Scholar] [CrossRef]
- Lechelon, M.; Meriguet, Y.; Gori, M.; Ruffenach, S.; Nardecchia, I.; Floriani, E.; Coquillat, D.; Teppe, F.; Mailfert, S.; Marguet, D.; et al. Experimental evidence for long-distance electrodynamic intermolecular forces. Sci. Adv. 2022, 8, eabl5855. [Google Scholar] [CrossRef]
- Tarla, S.; Ali, K.K.; Yilmazer, R.; Yusuf, A. Investigation of the dynamical behavior of the Hirota-Maccari system in single-mode fibers. Opt. Quan. Electron 2022, 54, 613. [Google Scholar] [CrossRef]
- Ahmad, J. Dispersive multiple lump solutions and soliton’s interaction to the nonlinear dynamical model and its stability analysis. Eur. Phys. J. D 2022, 76, 14. [Google Scholar]
- Dubey, S.; Chakraverty, S. Application of modified extended tanh method in solving fractional order coupled wave equations. Math. Comput. Simul. 2022, 198, 509–520. [Google Scholar] [CrossRef]
- Siddique, I.; Mehdi, K.B.; Jarad, F.; Elbrolosy, M.E.; Elmandouh, A.A. Novel precise solutions and bifurcation of traveling wave solutions for the nonlinear fractional (3+ 1)-dimensional WBBM equation. Int. J. Mod. Phys. B 2022, 37, 2350011. [Google Scholar] [CrossRef]
- Ansar, R.; Abbas, M.; Mohammed, P.O.; Al-Sarairah, E.; Gepreel, K.A.; Soliman, M.S. Dynamical Study of Coupled Riemann Wave Equation Involving Conformable, Beta, and M-Truncated Derivatives via Two Efficient Analytical Methods. Symmetry 2023, 15, 1293. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, F.; Salama, S.A.; Botmart, T.; Khater, M.M. Computational investigation on a nonlinear dispersion model with the weak non-local nonlinearity in quantum mechanics. Results Phys. 2022, 38, 105583. [Google Scholar] [CrossRef]
- Bilal, M.; Rehman, S.U.; Ahmad, J. The study of new optical soliton solutions to the time-space fractional nonlinear dynamical model with novel mechanisms. J. Ocean Eng. Sci. 2022. [Google Scholar] [CrossRef]
- Jan, A.; Srivastava, H.M.; Khan, A.; Mohammed, P.O.; Jan, R.; Hamed, Y.S. In Vivo HIV Dynamics, Modeling the Interaction of HIV and Immune System via Non-Integer Derivatives. Fractal Fract. 2023, 7, 361. [Google Scholar] [CrossRef]
- Chen, W.; Sun, H.; Li, X. Fractional Derivative Modeling in Mechanics and Engineering; Springer: Beijing, China, 2022. [Google Scholar]
- Abouelregal, A.E.; Fahmy, M.A. Generalized Moore-Gibson-Thompson thermoelastic fractional derivative model without singular kernels for an infinite orthotropic thermoelastic body with temperature-dependent properties. ZAMM-Z. Angew. Math. Mech. 2022, 102, e202100533. [Google Scholar] [CrossRef]
- Zhu, Y.; Tang, T.; Zhao, S.; Joralmon, D.; Poit, Z.; Ahire, B.; Keshav, S.; Raje, A.R.; Blair, J.; Zhang, Z.; et al. Recent Advancements and Applications in 3D Printing of Functional Optics. Addit. Manuf. 2022, 52, 102682. [Google Scholar] [CrossRef]
- Li, Q.; Shan, W.; Wang, P.; Cui, H. Breather, lump and N-soliton wave solutions of the (2+ 1)-dimensional coupled nonlinear partial differential equation with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 2022, 106, 106098. [Google Scholar] [CrossRef]
- Bilal, M.; Ahmad, J. A variety of exact optical soliton solutions to the generalized (2+ 1)-dimensional dynamical conformable fractional Schrödinger model. Results Phys. 2022, 33, 105198. [Google Scholar] [CrossRef]
- Aniqa, A.; Ahmad, J. Soliton solution of fractional Sharma-Tasso-Olever equation via an efficient (G/G)-expansion method. Ain Shams Eng. J. 2022, 13, 101528. [Google Scholar] [CrossRef]
- Wang, K.J.; Liu, J.H.; Wu, J. Soliton solutions to the Fokas system arising in monomode optical fibers. Optik 2022, 251, 168319. [Google Scholar] [CrossRef]
- Mohammed, P.O. Some positive results for exponential-kernel difference operators of Riemann-Liouville type. Math. Model. Control. 2024, 4, 133–140. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Sabu, J.; Zabihi, A.; Ansari, R.; Tunc, C. Implementation of soliton solutions for generalized nonlinear Schrodinger equation with variable coefficients. Nonlinear Stud. 2022, 29, 547–559. [Google Scholar]
- Li, J.; Li, B. Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation. Chaos Solit. Fractals 2022, 164, 112712. [Google Scholar] [CrossRef]
- Chen, Y.; Li, B. N-soliton solutions for the novel Kundu-nonlinear Schrödinger equation and Riemann–Hilbert approach. Wave Motion 2024, 127, 103293. [Google Scholar] [CrossRef]
- Tang, X.S.; Li, B. Optical solitons and stability analysis for the generalized fourth-order nonlinear Schrödinger equation. Mod. Phys. Lett. B 2019, 33, 1950333. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Inc, M.; Baleanu, D. New Solitary Wave Solutions for Variants of (3+1)-Dimensional Wazwaz-Benjamin-Bona-Mahony Equations. Front. Phys. 2020, 8, 332. [Google Scholar] [CrossRef]
- Ahmad, S.; Mahmoud, E.E.; Saifullah, S.; Ullah, A.; Ahmad, S.; Akgül, A.; El Din, S.M. New waves solutions of a nonlinear Landau–Ginzburg–Higgs equation: The Sardar-subequation and energy balance approaches. Results Phys. 2023, 51, 106736. [Google Scholar] [CrossRef]
- Ullah, N.; Asjad, M.I.; Awrejcewicz, J.; Muhammad, T.; Baleanu, D. On soliton solutions of fractional-order nonlinear model appears in physical sciences. AIMS Math. 2022, 7, 7421–7440. [Google Scholar] [CrossRef]
- Alsharidi, A.K.; Bekir, A. Discovery of New Exact Wave Solutions to the M-Fractional Complex Three Coupled Maccari’s System by Sardar Sub-Equation Scheme. Symmetry 2023, 15, 1567. [Google Scholar] [CrossRef]
- Tang, L. Exact solutions to conformable time-fractional Klein–Gordon equation with high-order nonlinearities. Results Phys. 2020, 18, 103289. [Google Scholar] [CrossRef]
- Zaman, U.H.M.; Arefin, M.A.; Akbar, M.A.; Uddin, M.H. Utilizing the extended tanh-function technique to scrutinize fractional order nonlinear partial differential equations. Partial Differ. Equ. Appl. Math. 2023, 8, 100563. [Google Scholar] [CrossRef]
- Mamun, A.A.; Ananna, S.N.; An, T.; Shahen, N.H.M.; Asaduzzaman, M.; Foyjonnesa. Dynamical behaviour of travelling wave solutions to the conformable time-fractional modified Liouville and mRLW equations in water wave mechanics. Heliyon 2021, 7, e07704. [Google Scholar] [CrossRef] [PubMed]
- Mamun, A.A.; Ananna, S.N.; Gharami, P.P.; An, T.; Asaduzzaman, M. The improved modified extended tanh-function method to develop the exact travelling wave solutions of a family of 3D fractional WBBM equations. Results Phys. 2022, 41, 105969. [Google Scholar] [CrossRef]
- Sadiya, U.; Inc, M.; Arefin, M.A.; Uddin, M.H. Consistent travelling waves solutions to the non-linear time fractional Klein–Gordon and Sine-Gordon equations through extended tanh-function approach. J. Taibah Univ. Sci. 2022, 16, 594–607. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, P.O.; Agarwal, R.P.; Brevik, I.; Abdelwahed, M.; Kashuri, A.; Yousif, M.A. On Multiple-Type Wave Solutions for the Nonlinear Coupled Time-Fractional Schrödinger Model. Symmetry 2024, 16, 553. https://doi.org/10.3390/sym16050553
Mohammed PO, Agarwal RP, Brevik I, Abdelwahed M, Kashuri A, Yousif MA. On Multiple-Type Wave Solutions for the Nonlinear Coupled Time-Fractional Schrödinger Model. Symmetry. 2024; 16(5):553. https://doi.org/10.3390/sym16050553
Chicago/Turabian StyleMohammed, Pshtiwan Othman, Ravi P. Agarwal, Iver Brevik, Mohamed Abdelwahed, Artion Kashuri, and Majeed A. Yousif. 2024. "On Multiple-Type Wave Solutions for the Nonlinear Coupled Time-Fractional Schrödinger Model" Symmetry 16, no. 5: 553. https://doi.org/10.3390/sym16050553
APA StyleMohammed, P. O., Agarwal, R. P., Brevik, I., Abdelwahed, M., Kashuri, A., & Yousif, M. A. (2024). On Multiple-Type Wave Solutions for the Nonlinear Coupled Time-Fractional Schrödinger Model. Symmetry, 16(5), 553. https://doi.org/10.3390/sym16050553