Effect of Orbital Symmetry on Time–Energy Distributions of F− Ions in the Attoclock Scheme
Abstract
:1. Introduction
2. Theoretical Methods
3. Numerical Results and Discussion
3.1. The Time–Energy Distributions for the Ellipticity of
3.2. The Effect of the Laser Ellipticity on the Time–Energy Distributions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163. [Google Scholar] [CrossRef]
- Itatani, J.; Quéré, F.; Yudin, G.L.; Ivanov, M.Y.; Krausz, F.; Corkum, P.B. Attosecond streak camera. Phys. Rev. Lett. 2002, 88, 173903. [Google Scholar] [CrossRef] [PubMed]
- Goulielmakis, E.; Uiberacker, M.; Kienberger, R.; Baltuska, A.; Yakovlev, V.; Scrinzi, A.; Westerwalbesloh, T.; Kleineberg, U.; Heinzmann, U.; Drescher, M.; et al. Direct measurement of light waves. Science 2004, 305, 1267. [Google Scholar] [CrossRef] [PubMed]
- Sansone, G.; Benedetti, E.; Calegari, F.; Vozzi, C.; Avaldi, L.; Flammini, R.; Poletto, L.; Velotta, R.; Stagira, S.; de Silvestri, S.; et al. Isolated single cycle attosecond pulses. Science 2006, 314, 443. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.M.; Toma, E.S.; Breger, P.; Mullot, G.; Augé, F.; Balcou, P.; Muller, H.G.; Agostini, P. Observation of a train of attosecond pulses from high harmonic generation. Science 2001, 292, 1689. [Google Scholar] [CrossRef] [PubMed]
- Goulielmakis, E.; Loh, Z.-H.; Wirth, A.; Santra, R.; Rohringer, N.; Yakovlev, V.S.; Zherebtsov, S.; Pfeifer, T.; Azzeer, A.M.; Kling, M.F.; et al. Real time observation of valence electron motion. Nature 2010, 466, 739. [Google Scholar] [CrossRef] [PubMed]
- Eckle, P.; Smolarski, M.; Schlup, P.; Biegert, J.; Staudte, A.; Schöffler; Muller, H.G.; Dörner, R.; Keller, U. Attosecond angular streaking. Nat. Phys. 2008, 4, 565. [Google Scholar] [CrossRef]
- Eckle, P.; Pfeiffer, A.N.; Cirelli, C.; Staudte, A.; Do, R.; Muller, H.G.; Bu, M.; Keller, U. Attosecond ionization and tunneling delay time measurements in helium. Science 2008, 322, 1525. [Google Scholar] [CrossRef] [PubMed]
- Torlina, L.; Morales, F.; Kaushal, J.; Ivanov, I.; Kheifets, A.; Zielinski, A.; Scrinzi, A.; Sukiasyan, S.; Ivanov, M.; Smirnova, O. Interpreting attoclock measurements of tunnelling time. Nat. Phys. 2015, 11, 503. [Google Scholar] [CrossRef]
- Sainadh, U.S.; Xu, H.; Wang, X.; Atia-Tul-Noor, A.; Wallace, W.C.; Douguet, N.; Bray, A.; Ivanov, I.; Bartschat, K.; Kheifets, A.; et al. Attosecond angular streaking and tunnelling time in atomic hydrogen. Nature 2019, 568, 75. [Google Scholar] [CrossRef]
- Camus, N.; Yakaboylu, E.; Fechner, L.; Klaiber, M.; Laux, M.; Mi, Y.; Hatsagortsyan, K.Z.; Pfeifer, T.; Keitel, C.H.; Moshammer, R. Experimental evidence for quantum tunneling time. Phys. Rev. Lett. 2017, 119, 023201. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Ge, P.; Fang, Y.; Yu, X.; Guo, Z.; Ma, X.; Deng, Y.; Gong, Q.; Liu, Y. Unifying tunneling pictures of strong-field ionization with an improved attoclock. Phys. Rev. Lett. 2019, 123, 073201. [Google Scholar] [CrossRef] [PubMed]
- Eicke, N.; Brennecke, S.; Lein, M. Attosecond-scale streaking methods for strong-field ionization by tailored fields. Phys. Rev. Lett. 2020, 124, 043202. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Ge, P.; Shao, Y.; Gong, Q.; Liu, Y. Attoclock photoelectron interferometry with two-color corotating circular fields to probe the phase and the amplitude of emitting wave packets. Phys. Rev. Lett. 2018, 120, 073202. [Google Scholar] [CrossRef] [PubMed]
- Pedatzur, O.; Orenstein, G.; Serbinenko, V.; Soifer, H.; Bruner, B.D.; Uzan, A.J.; Brambila, D.S.; Harvey, A.G.; Torlina, L.; Morales, F.; et al. Attosecond tunnelling interferometry. Nat. Phys. 2015, 11, 815. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.M.; Geng, J.W.; Han, M.; Sun, X.; Shao, Y.; Deng, Y.; Wu, C.; Peng, L.Y.; Gong, Q.; et al. Experimental verification of the nonadiabatic effect in strong-field ionization with elliptical polarization. Phys. Rev. A 2017, 95, 053425. [Google Scholar] [CrossRef]
- Eckart, S.; Fehre, K.; Eicke, N.; Hartung, A.; Rist, J.; Trabert, D.; Strenger, N.; Pier, A.; Schmidt, H.; Jahnke, T.; et al. Direct experimental access to the nonadiabatic initial momentum offset upon tunnel ionization. Phys. Rev. Lett. 2018, 121, 163202. [Google Scholar] [CrossRef] [PubMed]
- Pfei, A.N.; Cirelli, C.; Smolarski, M.; Dimitrovski, D.; Abu-Samha, M.; Madsen, L.B.; Keller, U. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms. Nat. Phys. 2012, 8, 76. [Google Scholar]
- Teeny, N.; Yakaboylu, E.; Bauke, H.; Keitel, C.H. Ionization time and exit momentum in strong-field tunnel ionization. Phys. Rev. Lett. 2016, 116, 063003. [Google Scholar] [CrossRef]
- Han, M.; Ge, P.; Wang, J.; Guo, Z.; Fang, Y.; Ma, X.; Yu, X.; Deng, Y.; Wörner, H.J.; Gong, Q.; et al. Complete characterization of sub-Coulomb-barrier tunnelling with phase-of-phase attoclock. Nat. Photonics 2021, 15, 765. [Google Scholar] [CrossRef]
- Yu, M.; Liu, K.; Li, M.; Yan, J.; Cao, C.; Tan, J.; Liang, J.; Guo, K.; Cao, W.; Lan, P.; et al. Full experimental determination of tunneling time with attosecond-scale streaking method. Light Sci. Appl. 2022, 11, 215. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Zhou, Y.; Liu, K.; Liu, K.L.; Li, M.; Lu, P. Radial-momentum-resolved measurement of the tunneling ionization time in attoclock experiments. Phys. Rev. A 2022, 106, 053106. [Google Scholar] [CrossRef]
- Yu, M.; Zhou, Y.; Li, M.; Lu, P. Probing the effect of orbital deformation on the atomic tunneling ionization-time distribution by phase-of-the-phase spectroscopy. Phys. Rev. A 2022, 105, 063103. [Google Scholar] [CrossRef]
- Skruszewicz, S.; Tiggesbäumker, J.; Meiwes-Broer, K.-H.; Arbeiter, M.; Fennel, T.; Bauer, D. Two-color strong-field photoelectron spectroscopy and the phase of the phase. Phys. Rev. Lett. 2015, 115, 043001. [Google Scholar] [CrossRef] [PubMed]
- Almajid, M.A.; Zabel, M.; Skruszewicz, S.; Tiggesbäumker, J.; Bauer, D. Two-color phase-of-the-phase spectroscopy in the multiphoton regime. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 194001. [Google Scholar] [CrossRef]
- Tulsky, V.A.; Almajid, M.A.; Bauer, D. Two-color phase-of-the-phase spectroscopy with circularly polarized laser pulses. Phys. Rev. A 2018, 98, 053433. [Google Scholar] [CrossRef]
- Würzler, D.; Skruszewicz, S.; Sayler, A.M.; Zille, D.; Möller, M.; Wustelt, P.; Zhang, Y.; Tiggesbäumker, J.; Paulus, G.G. Accurate retrieval of ionization time by means of the phase-of-the-phase spectroscopy, and its limits. Phys. Rev. A 2020, 101, 033416. [Google Scholar] [CrossRef]
- Tulsky, V.A.; Krebs, B.; Tiggesbäumker, J.; Bauer, D. Revealing laser-coherent electron features using phase-of the-phase spectroscopy. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 074001. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, M.; Quan, W.; Liu, X.J.; Chen, J. Breakdown of one-to-one correspondence between the photoelectron emission angle and the tunneling instant in the attoclock scheme. Optica 2023, 10, 1316. [Google Scholar] [CrossRef]
- Barth, I.; Smirnova, O. Nonadiabatic tunneling in circularly polarized laser fields: Physical picture and calculations. Phys. Rev. A 2011, 84, 063415. [Google Scholar] [CrossRef]
- Herath, T.; Yan, L.; Lee, S.K.; Li, W. Strong-field ionization rate depends on the sign of the magnetic quantum number. Phys. Rev. Lett. 2012, 109, 043004. [Google Scholar] [CrossRef] [PubMed]
- Barth, I.; Smirnova, O. Nonadiabatic tunneling in circularly polarized laser fields. II. Derivation of formulas. Phys. Rev. A 2013, 87, 013433. [Google Scholar] [CrossRef]
- Barth, I.; Lein, M. Numerical verification of the theory of nonadiabatic tunnel ionization in strong circularly polarized laser fields. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 204016. [Google Scholar] [CrossRef]
- Ma, M.Y.; Wang, J.P.; Jing, W.Q.; Guan, Z.; Jiao, J.H.; Wang, G.L.; Chen, J.H.; Zhao, S.F. Controlling the atomic-orbital-resolved photoionization for neon atoms by counter-rotating circularly polarized attosecond pulses. Opt. Express 2021, 29, 33245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Basnayake, G.; Winney, A.; Lin, Y.F.; Debrah, D.; Lee, S.K.; Li, W. Orbital-resolved nonadiabatic tunneling ionization. Phys. Rev. A 2017, 96, 023422. [Google Scholar] [CrossRef]
- Wang, J.P.; He, F. Tunneling ionization of neon atoms carrying different orbital angular momenta in strong laser fields. Phys. Rev. A 2017, 95, 043420. [Google Scholar] [CrossRef]
- Liu, K.; Ni, H.; Renziehausen, K.; Rost, J.-M.; Barth, I. Deformation of atomic p± orbitals in strong elliptically polarized laser fields: Ionization time drifts and spatial photoelectron separation. Phys. Rev. Lett. 2018, 121, 203201. [Google Scholar] [CrossRef]
- Eckart, S.; Kunitski, M.; Richter, M.; Hartung, A.; Rist, J.; Trinter, F.; Fehre, K.; Schlott, N.; Henrichs, K.; Schmidt, L.; et al. Ultrafast preparation and detection of ring currents in single atoms. Nat. Phys. 2018, 14, 701. [Google Scholar] [CrossRef]
- Serov, V.V.; Cesca, J.; Kheifets, A.S. Numerical and laboratory attoclock simulations on noble-gas atoms. Phys. Rev. A 2021, 103, 023110. [Google Scholar] [CrossRef]
- Iqbal, A.; Ahmad, A.; Amjad, R.J. Photodetachment of hydrogen negative ion near inelastic surfaces: Arbitrary laser polarization direction. Int. J. Quantum Chem. 2015, 115, 1526. [Google Scholar] [CrossRef]
- Chen, J.H.; Yu, H.Y.; Du, H.C. Effect of the atomic orbital on the retrieval of the ionization time on the basis of a phase-of-phase attoclock: F− ions as an example. Phys. Rev. A 2024, 110, 013113. [Google Scholar] [CrossRef]
- Milošević, D.B.; Paulus, G.G.; Bauer, D.; Becker, W. Above-threshold ionization by few-cycle pulses. J. Phys. B At. Mol. Opt. Phys. 2006, 39, R203. [Google Scholar] [CrossRef]
- Gribakin, G.F.; Kuchiev, M.Y. Multiphoton detachment of electrons from negative ions. Phys. Rev. A 1997, 55, 3760. [Google Scholar] [CrossRef]
- Shearer, S.F.C.; Monteith, M.R. Direct photodetachment of F− by mid-infrared few-cycle femtosecond laser pulses. Phys. Rev. A 2013, 88, 033415. [Google Scholar] [CrossRef]
- Liu, M.M.; Li, M.; Shao, Y.; Han, M.; Gong, Q.; Liu, Y. Effects of orbital and Coulomb potential in strong-field nonadiabatic tunneling ionization of atoms. Phys. Rev. A 2017, 96, 043410. [Google Scholar] [CrossRef]
- Chen, J.H.; Wen, L.C.; Zhao, S.F. Orbital-resolved photoelectron momentum distributions of F− ions in a counter-rotating bicircular field. Opt. Express 2023, 31, 5708. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Han, S.S.; Chen, J. Time-energy analysis of above threshold ionization. Opt. Express 2010, 18, 1240. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Han, S.S.; Chen, J. Time-energy analysis of above threshold ionization in few-cycle laser pulses. Phys. Rev. A 2012, 86, 053409. [Google Scholar] [CrossRef]
- Guo, L.; Liu, M.Q.; Lu, R.H.; Han, S.S.; Chen, J. Analysis of above-threshold ionization by “Wigner-distribution-like function” method. Laser Part. Beams 2019, 37, 448. [Google Scholar] [CrossRef]
- Arbó, D.G.; Ishikawa, K.L.; Schiessl, K.; Persson, E.; Burgdörfer, J. Intracycle and intercycle interferences in above-threshold ionization: The time grating. Phys. Rev. A 2010, 81, 021403. [Google Scholar] [CrossRef]
- Chen, J.H.; Xiao, X.R.; Zhao, S.F.; Peng, L.Y. Dependence of direct and rescattered photoelectron spectra of fluorine anions on orbital symmetry in a short laser pulse. Phys. Rev. A 2020, 101, 033409. [Google Scholar] [CrossRef]
- Chen, J.H.; Han, M.; Xiao, X.R.; Peng, L.Y.; Liu, Y. Atomic-orbital-dependent photoelectron momentum distributions for F− ions by orthogonal two-color laser fields. Phys. Rev. A 2018, 98, 033403. [Google Scholar] [CrossRef]
- Jašarević, A.; Hasović, E.; Kopold, R.; Becker, W.; Milošević, D.B. Application of the saddle-point method to strong-laser-field ionization. J. Phys. A Math. Theor. 2020, 53, 125201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-H.; Zhao, S.-F. Effect of Orbital Symmetry on Time–Energy Distributions of F− Ions in the Attoclock Scheme. Symmetry 2024, 16, 1019. https://doi.org/10.3390/sym16081019
Chen J-H, Zhao S-F. Effect of Orbital Symmetry on Time–Energy Distributions of F− Ions in the Attoclock Scheme. Symmetry. 2024; 16(8):1019. https://doi.org/10.3390/sym16081019
Chicago/Turabian StyleChen, Jian-Hong, and Song-Feng Zhao. 2024. "Effect of Orbital Symmetry on Time–Energy Distributions of F− Ions in the Attoclock Scheme" Symmetry 16, no. 8: 1019. https://doi.org/10.3390/sym16081019
APA StyleChen, J.-H., & Zhao, S.-F. (2024). Effect of Orbital Symmetry on Time–Energy Distributions of F− Ions in the Attoclock Scheme. Symmetry, 16(8), 1019. https://doi.org/10.3390/sym16081019