Saltar ao contido

Turbina a gas

Na Galipedia, a Wikipedia en galego.
Turbina a gas GE serie H, para xeración eléctrica, de potencia de 480 MW en ciclo combinado.

Unha turbina a gas é un tipo de motor de combustión interna rotativo que transforma a enerxía química dun combustíbel (líquido ou gas) en enerxía mecánica facendo xirar un eixo.

A turbina consta de tres partes tres equipamentos: compresor, cámara de combustión e turbina propiamente dita. Esta configuración forma un ciclo termodinámico a gas, cuxo modelo ideal denomínase Ciclo Brayton, concibido por George Brayton en 1870.

Este conxunto opera nun ciclo aberto, ou sexa, o fluído de traballo (ar) é admitido na presión atmosférica e os gases de escape, tras pasaren pola turbina, son descargados de volta na atmosfera sen que retornen á admisión.

A denominación turbina a gas pode ser erroneamente asociada ao combustíbel utilizado. A palabra gas non se refire á queima de gases combustíbeis, mais, si ao fluído de traballo da turbina, que é neste caso a mestura de gases resultante da combustión. O combustíbel en si pode ser gasoso, como gas natural, gas liquefeito de petróleo (GLP), gas de síntese ou líquido, como queroseno, óleo diésel e até mesmo óleos máis pesados.

Ciclo Brayton

[editar | editar a fonte]
Diagrama Entalpia x Entropía de Ciclo Brayton (ideal) e ciclo real a gas.
Artigo principal: Ciclo Brayton.

O ciclo Brayton é un ciclo ideal, unha aproximación dos procesos térmicos que ocorren nas turbinas a gas, describindo variacións de estado (presión e temperatura) dos gases. O concepto é utilizado como base didáctica e para análise dos ciclos reais, que se desvían do modelo ideal, debido a limitacións tecnolóxicas e fenómenos de irreversibilidade, como o atrito.

O ciclo se constitúe de catro etapas. Primeiramente, o ar en condición ambiente pasa polo compresor, onde ocorre compresión adiabática e isentrópica, con aumento de temperatura e consecuente aumento de entalpía. Comprimido, o ar é dirixido ás cámaras, onde se mestúra co combustíbel posibilitando a queima e quecemento, á presión constante. Ao saír da cámara de combustión, os gases, á alta presión e temperatura, se expanden conforme pasan pola turbina, idealmente sen variación de entropía. Na medida en que o fluído exerce traballo sobre as palletas, redúcense a presión e temperatura dos gases, xerándose potencia mecánica. A potencia extraída a través do eixe da turbina é usada para accionar o compresor e eventualmente para accionar outra máquina. A cuarta etapa non ocorre fisicamente, se tratando dun ciclo termodinámico aberto. Conceptualmente, esta etapa representa a transferencia de calor do fluído para o ambiente.

Desta forma, mesmo se tratando dun ciclo aberto, parte da enerxía proveniente da combustión é rexeitada so a forma de calor, contido nos gases quentes de escape. O rexeitamento de calor é un límite físico, intrínseco ao funcionamento de ciclos termodinámicos, mesmo nos casos ideais, como define a segunda lei da termodinámica.

A perda de ciclo ideal pode ser cuantificada pola potencia proveniente do combustíbel, descontándose a potencia de accionamento do compresor e a potencia líquida. Así, diminúese a perda a medida que se reduce a temperatura de escape e se eleva a temperatura de entrada da turbina, o que fai da resistencia, a altas temperaturas, das partes da turbina un punto extremamente crítico na tecnoloxía de construción destes equipamentos.

Véxase tamén

[editar | editar a fonte]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy