Jump to content

Apollonius na Perga

Daga Wikipedia, Insakulofidiya ta kyauta.
Apollonius na Perga
Rayuwa
Cikakken suna Ἀπολλώνιος
Haihuwa Perge (en) Fassara, 262 "BCE"
Mutuwa Alexandria, 190 "BCE"
Karatu
Harsuna Ancient Greek (mul) Fassara
Sana'a
Sana'a masanin lissafi da Ilimin Taurari
Muhimman ayyuka Conics (en) Fassara
Apollonius' theorem (en) Fassara
circles of Apollonius (en) Fassara
Problem of Apollonius (en) Fassara
Wannan Muƙalar guntuwa ce: tana buƙatar a inganta ta, kuna iya gyara ta.
Bayanin Apollonius daga bugun 1537 na ayyukansa
bargama asklepieion

Apollonius na Perga ( Girkanci: 'Apollṓnios ho Pergaîos' ; Latin  ; c. 240 BCE/BC – c. 190 BCE/BC ) wani masanin lissafi ne na Hellenanci na Zamanin da, kuma masanin ilmin taurari wanda aka sani da aikinsa akan conic sections. Da farko daga gudunmawar Euclid da Archimedes kan darasin, ya kawo su jihar kafin ƙirƙirar analytic geometry. Bayanansa dangane da ma'anar kalmomi irinsu ellipse, parabola, da hyperbola sune waɗanda ake amfani da su a yau. Gottfried Wilhelm Leibniz ya ce "Wanda ya fahimci Archimedes da Apollonius ba zai gaza yabawa nasarorin da manyan mutanen zamanin baya suka samu ba."[1]

Apollonius yayi ayyuka akan wasu darussa masu yawa, gami da ilimin taurari. Yawancin wannan aikin ba'a same su ba, inda kadan ne daga ciki da wasu mawallafa kamar Pappus na Alexandria suka ambata. Hasashensa akan kewayawar rana a sararin samaniya don bayyana yanayin motsin taurarin da ba a iya gani ba, wanda aka yi imani da shi har zuwa tsakiyar zamani, inda aka maye gurbinsa a lokacin Renaissance. An sanya wani ramin dutsen a duniyar wata Apollonius crater don girmama shi.[2]

Ga wannan muhimmin wanda ya ba da gudummawa a fannin lissafi, ƙarancin bayanan tarihin rayuwarsa ya rage. Mai sharhi na karni na 6 na Girka, Eutocius na Ascalon, akan babban aikin Apollonius, Conics, ya ce: [3]

Apollonius, masanin ilimin lissafin geometry, ... ya fito ne daga Perga a Pamphylia a zamanin Ptolemy III Euergetes, haka ma Herakleios marubucin tarihin Archimedes ya rubuta. . . .

Perga a lokacin wani birni ne na Hellenized na Pamfilia a kasar Anatoliya. Har yanzu akwai sauran burbushin birnin. Ita ce cibiyar al'adun Helenanci. Euergetes, "benefactor", ya gano Ptolemy III Euergetes, daular Girka ta uku na Masar a cikin gadon diadochi. Mai yiwuwa, "lokutan rayuwarsa" sun kasance tsakanin, 246-222/221 BC. Koyaushe mai mulki ko majistare ke rubutu rikodin lokaci, saboda haka idan aka haifi Apollonius kafin 246, da ya kasance "lokacin" mahaifin Euergetes. Ba a tabbatar da ainihin Herakleios ba. Amma kiyasin lokacin rayuwar Apollonius sun tabbata, amma ba za a iya bayar da takamaiman ranaku ba.[4] Ƙayyadaddun shekarun haihuwa da mutuwa da malamai daban-daban suka bayyana, hasashe ne kawai. [5]

  1. "Gottfried Wilhelm Leibniz: Quotes". goodreads.
  2. Ji, Shanyu. "Apollonius and Conic Sections" (PDF). Archived from the original (PDF) on 2021-12-02. Retrieved 2023-05-06.
  3. Eutocius, Commentary on Conica, Book I, Lines 5-10, to be found translated in Apollonius of Perga & Thomas 1953
  4. Studies on the dates of Apollonius are in essence a juggling of the dates of individuals mentioned by Apollonius and other ancient authors. There is the question of exactly what event occurred 246 - 222, whether birth or education. Scholars of the 19th and earlier 20th centuries tend to favor an earlier birth, 260 or 262, in an effort to make Apollonius more the age-mate of Archimedes. Some inscriptional evidence that turned up at Pompeii make Philonides the best dated character. He lived in the 2nd century BC. Since Apollonius' life must be extended into the 2nd century, early birth dates are less likely. A more detailed presentation of the data and problems may be found in Samfuri:Harvtxt. The dichotomy between conventional dates deriving from tradition and a more realistic approach is shown by McElroy, Tucker (2005). "Apollonius of Perga". A to Z of Mathematicians. McElroy at once gives 262 - 190 (high-side dates) and explains that it should be late 3rd - early 2nd as it is in this article.
  5. Fried & Unguru 2001
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy