Vai al contenuto

Curva (matematica)

Da Wikipedia, l'enciclopedia libera.
Una curva piana a forma di farfalla

In matematica, una curva è un oggetto unidimensionale e continuo, come ad esempio la circonferenza e la retta. Una curva può giacere su un piano, nello spazio euclideo, o in uno spazio topologico più generale.

Una curva può essere pensata intuitivamente come la traiettoria descritta da un oggetto puntiforme che si muove con continuità in qualche spazio. Per definire la curva si fa ricorso alle nozioni di funzione continua e funzione differenziabile.

Il sostegno di una curva è la sua immagine
La spirale di Fermat è una curva semplice non chiusa
Una rodonea con tre petali. Si tratta di una curva chiusa non semplice (si interseca più volte nel centro)
Una curva semplice chiusa nello spazio tridimensionale è un nodo

In topologia, una curva è una funzione vettoriale continua

dove è un intervallo della retta reale e è un qualsiasi spazio topologico.

Ad esempio, può essere il piano cartesiano , lo spazio euclideo o un generico spazio . L'intervallo può essere ad esempio un intervallo chiuso , un intervallo aperto , una semiretta , ecc.

Sostegno della curva

[modifica | modifica wikitesto]

L'immagine di una curva viene anche chiamata sostegno, o supporto, della curva. Spesso, con un abuso di linguaggio, per "curva" si intende il sostegno e non la funzione. In topologia, quando l'intervallo di partenza è quello unitario si parla di cammino o arco.

Ad esempio, una circonferenza è il sostegno della curva

Curva chiusa e curva semplice

[modifica | modifica wikitesto]

Una curva che coincide sui suoi estremi, cioè tale che , è una curva chiusa o un laccio.

Una curva si dice semplice se è tale che presi due punti distinti , di cui almeno uno appartenente all'intervallo , risulta . In altre parole la funzione è quasi iniettiva e la curva non ha autointersezioni con un'unica eccezione ammessa:

Una curva piana chiusa e semplice è anche detta curva di Jordan, quindi una circonferenza è una curva di Jordan.

Una curva piana è una curva a valori nel piano cartesiano .

Parametrizzazioni

[modifica | modifica wikitesto]

Se è un omeomorfismo crescente dell'intervallo, ad esempio una funzione derivabile e biettiva con derivata positiva, allora ottenuta componendo e è un'altra curva avente lo stesso sostegno di . Si dice che è un'altra parametrizzazione della curva .

Differenziabilità

[modifica | modifica wikitesto]
Lo stesso argomento in dettaglio: Geometria differenziale delle curve.
La curva di Koch non è differenziabile
Una curva liscia (un'ellisse, in rosso) ed una curva regolare a tratti (la sua evoluta, in blu)

Una curva topologica, per quanto sembri rispondere all'esigenza di rappresentare oggetti "filiformi" e "senza spessore" che localmente sembrano una retta incurvata, può essere molto bizzarra se non si fissano delle condizioni aggiuntive. Ad esempio nel 1890 il matematico Giuseppe Peano scoprì una curva, nota ora come curva di Peano, avente come sostegno un quadrato. La curva di Koch è invece un frattale con dimensione di Hausdorff compresa tra uno e due, un oggetto dimensionalmente intermedio tra la retta e il piano.

Una condizione aggiuntiva che garantisce l'aspetto "filiforme" del sostegno è la differenziabilità: se è il piano o un altro spazio euclideo, è possibile chiedere che sia differenziabile in ogni punto e in questo caso si parla di curva differenziabile o regolare. In una curva differenziabile, per ogni è definita una tangente alla curva in : la tangente è il vettore delle derivate di .

Se si immagina di percorrere la curva nel tempo, la lunghezza del vettore tangente è la velocità della curva nel punto. La velocità può cambiare tramite riparametrizzazione della curva: data una curva, c'è sempre un'unica parametrizzazione tale che la velocità sia costantemente uno e questo parametro è la lunghezza d'arco.

Regolarità a tratti

[modifica | modifica wikitesto]

In molti contesti è utile parlare di curve "lisce" anche se queste dovessero presentare uno più punti di cuspide e/o più punti angolosi. Per questo scopo si definisce una curva regolare a tratti come una curva il cui dominio è unione di intervalli successivi, su ciascuno dei quali la curva è regolare. Formalmente, si chiede che esista una partizione di un intervallo in alcuni intervalli tali che la restrizione della curva su ciascun sia regolare.

Rappresentazione cartesiana e parametrica

[modifica | modifica wikitesto]
Lo stesso argomento in dettaglio: Curva nello spazio.

Due modi utilizzati per rappresentare una curva in tre dimensioni sono la forma cartesiana e la forma parametrica.

Rappresentazione cartesiana

[modifica | modifica wikitesto]

È possibile rappresentare una curva tridimensionale in forma implicita identificando il suo supporto con il luogo di zeri di un campo vettoriale , ovvero i punti di coordinate che verificano il sistema:

dove e sono funzioni di classe almeno a valori reali. Questa rappresentazione può essere pensata come curva intersezione di due superfici in forma implicita.

Condizione sufficiente per la regolarità locale di una curva così rappresentata nell'intorno di un suo punto è che la jacobiana:

abbia rango massimo

Rappresentazione parametrica

[modifica | modifica wikitesto]

Una curva in forma parametrica è una funzione vettoriale di una sola variabile del tipo:[1]

Si può scrivere anche:

La variabile si chiama parametro. Una curva è una funzione di classe in un intervallo se le funzioni , e hanno derivate continue in questo intervallo. Una curva si dice regolare in un punto se:

e regolare in se ciò vale in ogni punto di . Un punto in cui si abbia si dice punto singolare per la curva.

Lunghezza della curva

[modifica | modifica wikitesto]
Lo stesso argomento in dettaglio: Lunghezza di un arco.

Se è uno spazio metrico (ad esempio, il piano o uno spazio euclideo) si può usare la metrica stessa per definire la lunghezza di una curva. Sia data una curva e una partizione dell'intervallo cioè un insieme finito di punti tale che:

Allora si può definire la poligonale, cioè una curva che è l'unione dei segmenti aventi vertici l'immagine degli elementi della partizione tramite . In pratica la poligonale è una curva spezzata i cui vertici appartengono alla curva originale. Più i vertici della poligonale sono numerosi e più la sua lunghezza approssimerà quella della curva.

Si può definire la lunghezza della curva come estremo superiore della lunghezza della poligonale al variare della partizione :

Se questo valore non è infinito, la curva si dice rettificabile. Le curve di Peano e di Koch non sono rettificabili.

La lunghezza di una curva non dipende dalla sua parametrizzazione, cioè non varia se si considerano parametrizzazioni equivalenti.

Una curva derivabile è rettificabile: per ogni punto dell'intervallo è definita una velocità, e si può dimostrare che la lunghezza definita come sopra è uguale all'integrale di questa velocità su

usando la nozione di integrale di linea si può scrivere anche:

  1. ^ Matt Insall and Eric Weisstein, MathWorld - Curve, su mathworld.wolfram.com, 2012.
  • Erwin Kreyszig, Differential Geometry, Dover Publications, New York, 1991, ISBN 0-486-66721-9
  • Euclid, commentary and trans. by T. L. Heath Elements Vol. 1 (1908 Cambridge) Google Books
  • E. H. Lockwood A Book of Curves (1961, Cambridge)

Voci correlate

[modifica | modifica wikitesto]

Altri progetti

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
Controllo di autoritàThesaurus BNCF 10133 · LCCN (ENsh85034914 · GND (DE4033824-1 · BNF (FRcb119415578 (data) · J9U (ENHE987007538488705171 · NDL (ENJA00567237
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy