Skip to main content

An insight into the provenance of the Phoenician-Punic glass beads of the necropolis of Vinha das Caliças (Beja, Portugal)

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Phoenician-Punic glass beads recovered from the necropolis of Vinha das Caliças 4 (Beja, Portugal), dated to the Iron Age, were studied by variable pressure scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (VP-SEM–EDS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

All glass was found to be soda-lime-silica natron-based glass. Trace element and rare earth element analysis suggest that the blue, turquoise, white, and colorless glass was manufactured in the Levant region, using rather pure coastal sands, while two amber and black-colored glass beads seem to have been produced in Egypt. Although the exact manufacture location of these Phoenician-Punic glass beads remains unknown, these results are in agreement with the commercialization of raw glass produced in established primary glass workshops in the Levant and in Egypt. The procurement of cobalt ores from specific geological provinces, on the other hand, is a strong evidence of the existence of large-scale trade routes of both raw materials and finished artefacts in the Iron Age. The finished artefacts trade routes included not only the previously established Mediterranean world and sub-Saharan Africa, but also Southern Central Iberia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study, which are not included in the manuscript or as supplementary information (Online Resource 1) are available from the corresponding author upon reasonable request.

References

  • Adriano DC (2001) Arsenic. Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer-Verlag, New York, USA, pp 219–261

    Chapter  Google Scholar 

  • Arletti R, Bertoni E, Vezzalini G, Mengoli D (2011) Glass beads from Villanovian excavations in Bologna (Italy): an archaeometrical investigation. Eur J Mineral 23:959–968. https://doi.org/10.1127/0935-1221/2011/0023-2166

    Article  Google Scholar 

  • Arletti R, Ferrari D, Vezzalini G (2012) Pre-Roman glass from Mozia (Sicily-Italy): the first archaeometrical data. J Archaeol Sci 39:3396–3401. https://doi.org/10.1016/j.jas.2012.06.009

    Article  Google Scholar 

  • Arletti R, Maiorano C, Ferrari D et al (2010) The first archaeometric data on polychrome Iron Age glass from sites located in northern Italy. J Archaeol Sci 37:703–712. https://doi.org/10.1016/j.jas.2009.11.001

    Article  Google Scholar 

  • Arruda AM (2000) Los Fenicios en Portugal. Fenicios y mundo indígena en el centro y sur de Portugal (siglos VIII-VI a.C.). Universidad Pompeo Fabra, Barcelona

  • Arruda AM (2005) O 1.o milénio a.n.e. no centro e no sul de Portugal : leituras possíveis no início de um novo século. O Arqueólogo Port 4:9–156

    Google Scholar 

  • Arruda AM, Barbosa R, Gomes F, Sousa E de (2016a) A Necrópole de Vinha das Caliças (Beja, Portugal). In: Jiménez Ávila J (ed) Sidereum Ana III - El río Guadiana y Tartessos. Consórcio de la Ciudad Monumental Histórico-Artística y Arqueológica de Mérida, Mérida, pp 187–225

  • Arruda AM, Pereira C, Pimenta J, et al (2016b) As contas de vidro do Porto do Sabugeiro (Muge, Salvaterra de Magos, Portugal) / glass beads from Porto do Sabugeiro (Muge, Salvaterra dos Magos, Portugal). Cuad Prehist y Arqueol 42:79–101. https://doi.org/10.15366/cupauam2016.42.002

  • Barceloux DG (1999) Cobalt. Clin Toxicol 37:201–2016. https://doi.org/10.1016/B978-0-12-386454-3.00832-0

    Article  Google Scholar 

  • Bastin ES (1939) The nickel-cobalt-native silver ore type. Econ Geol 34:1–40. https://doi.org/10.2113/gsecongeo.34.1.1

    Article  Google Scholar 

  • Biron I, Chopinet M-H (2013) Colouring, Decolouring and Opacifying of glass. In: Janssens K (ed) Modern Methods for analysing archaeological and historical glass, Volume I. John Wiley & Sons, Ltd, pp 49–65

  • Blomme A, Degryse P, Dotsika E et al (2017) Provenance of polychrome and colourless 8th–4th century BC glass from Pieria, Greece: a chemical and isotopic approach. J Archaeol Sci 78:134–146. https://doi.org/10.1016/j.jas.2016.12.003

    Article  Google Scholar 

  • Brems D, Degryse P (2014) Trace element analysis in provenancing Roman glass-making. Archaeometry 56:116–136. https://doi.org/10.1111/arcm.12063

    Article  Google Scholar 

  • Brems D, Degryse P, Hasendoncks F et al (2012) Western Mediterranean sand deposits as a raw material for Roman glass production. J Archaeol Sci 39:2897–2907. https://doi.org/10.1016/j.jas.2012.03.009

    Article  Google Scholar 

  • Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non Cryst Solids 179:300–308. https://doi.org/10.1016/0022-3093(94)90708-0

    Article  Google Scholar 

  • Bunker BC, Arnold GW, Beauchamp EK, Day DE (1983) Mechanisms for alkali leaching in mized-NaK silicate glasses. J Non Cryst Solids 58:295–322. https://doi.org/10.1016/0022-3093(83)90031-5

    Article  Google Scholar 

  • Ceglia A, Cosyns P, Schibille N, Meulebroeck W (2019) Unravelling provenance and recycling of late antique glass from Cyprus with trace elements. Archaeol Anthropol Sci 11:279–291. https://doi.org/10.1007/s12520-017-0542-1

    Article  Google Scholar 

  • Conte S, Arletti R, Henderson J et al (2018) Different glassmaking technologies in the production of Iron Age black glass from Italy and Slovakia. Archaeol Anthropol Sci 10:503–521. https://doi.org/10.1007/s12520-016-0366-4

    Article  Google Scholar 

  • Costa M, Arruda AM, Barbosa R et al (2019a) A micro-analytical study of the scarabs of the Necropolis of Vinha das Caliças (Portugal). Microsc Microanal 25:214–220. https://doi.org/10.1017/S143192761801560X

    Article  Google Scholar 

  • Costa M, Arruda AM, Dias L et al (2019b) The combined use of Raman and micro-X-ray diffraction analysis in the study of archaeological glass beads. J Raman Spectrosc 50:250–261. https://doi.org/10.1002/jrs.5446

    Article  Google Scholar 

  • Costa M, Barrulas P, Dias L et al (2019c) Multi-analytical approach to the study of the European glass beads found in the tombs of Kulumbimbi (Mbanza Kongo, Angola). Microchem J 149:103990. https://doi.org/10.1016/j.microc.2019.103990

    Article  Google Scholar 

  • Costa M, Barrulas P, Dias L et al (2020) Determining the provenance of the European glass beads of Lumbu (Mbanza Kongo, Angola). Microchem J 154:104531. https://doi.org/10.1016/j.microc.2019.104531

    Article  Google Scholar 

  • D’Oriano C, Dapelo S, Podda F, Cioni R (2008) Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): Setting operating conditions and instrumental performance. Period Di Mineral 77:65–74. https://doi.org/10.2451/2008PM0019

    Article  Google Scholar 

  • Dietler M (2009) Colonial Encounters in Iberia and the Western Mediterranean: an exploratory framework. In: Dietler M, López-Ruiz C (eds) Colonial Encounters in ancient Iberia: Phoenician, Greek, and Indigenous Relations. The University of Chicago Press, Chicago, USA, pp 3–48

    Chapter  Google Scholar 

  • Direção-Geral do Património Cultural Vinha das Caliças 4. https://arqueologia.patrimoniocultural.pt/index.php?sid=sitios&subsid=2404562. Accessed 3 May 2021

  • Duckworth CN, Henderson J, Rutten FJM, Nikita K (2012) Opacifiers in Late Bronze Age glasses: the use of ToF-SIMS to identify raw ingredients and production techniques. J Archaeol Sci 39:2143–2152. https://doi.org/10.1016/j.jas.2012.02.011

    Article  Google Scholar 

  • Eremin K, Degryse P, Erb-Satullo N, et al (2012) Iron Age glass beads from Carthage. In: Meeks N, Cartwright C, Meek A, Mongiatti A (eds) Historical technology, materials and conservation: SEM and microanalysis. Archetype Publications Ltd. in association with the British Museum, pp 30–35

  • Freestone IC, Leslie KA, Thirlwall M, Gorin-Rosen Y (2003) Strontium Isotopes in the investigation of early glass production: Byzantine and early Islamic glass from the Near East. Archaeometry 45:19–32. https://doi.org/10.1111/1475-4754.00094

    Article  Google Scholar 

  • Gallo F, Silvestri A, Molin G, et al (2014) Iron Age vessels from the Archaeological Museum of Adria (North-Eastern Italy): a textural, chemical and mineralogical study. In: Proceedings of the 39th International Symposium for Archaeometry, Leuven, 2012. pp 198–207

  • García-Heras M, Rincón JM, Jimeno A, Villegas MA (2005) Pre-Roman coloured glass beads from the Iberian Peninsula: a chemico-physical characterisation study. J Archaeol Sci 32:727–738. https://doi.org/10.1016/j.jas.2004.12.007

    Article  Google Scholar 

  • Gedzevičiūtė V, Welter N, Schüssler U, Weiss C (2009) Chemical composition and colouring agents of Roman mosaic and millefiori glass, studied by electron microprobe analysis and Raman microspectroscopy. Archaeol Anthropol Sci 1:15–29. https://doi.org/10.1007/s12520-009-0005-4

    Article  Google Scholar 

  • Giannini R, Freestone IC, Shortland AJ (2017) European cobalt sources identified in the production of Chinese famille rose porcelain. J Archaeol Sci 80:27–36. https://doi.org/10.1016/j.jas.2017.01.011

    Article  Google Scholar 

  • Gomes FB (2014) Mediterranean goods in “Post-Orientalizing” funerary contexts of Southern Portugal: some remarks on consumption, peripherality and cultural identity. In: Álvarez Martínez JM., Nogales Basarrate T, Rodà de Llanza I (eds) Actas del XVIII Congreso Internacional de Arqueología Clásica: Centro y Perifería en el Mundo Clásico. Museo Nacional de Arte Romano, Mérida, pp 435–437

  • Gratuze B, Janssens K (2004) Provenance analysis of glass artefacts. In: Janssens K, Van Grieken R (eds) Comprehensive analytical chemistry, 1st edn. Elsevier Science, pp 663–712

  • Gratuze B, Pactat I, Schibille N (2018) Changes in the signature of cobalt colorants in late antique and early Islamic glass production. Minerals 8:225. https://doi.org/10.3390/min8060225

    Article  Google Scholar 

  • Gratuze B, Soulier I, Blet M, Vallauri L (1996) De l’origine du cobalt: du verre à la céramique. Rev d’archéométrie 77–94. https://doi.org/10.3406/arsci.1996.939

  • Henderson J (2012) The provenance of ancient man-made glass: raw materials and the use of chemical and isotopic analytical techniques. In: Liritzis I, Stevenson CM (eds) Obsidian and ancient manufactured glasses. University of New Mexico Press, pp 185–201

  • Ikenne M, Souhassou M, Saintilan NJ, et al (2020) Cobalt-nickel-copper arsenide, sulpharsenide and sulphide mineralisation in the Bou Azzer window, Anti-Atlas, Morocco: one century of multi-disciplinary and geological investigations, mineral exploration and mining. Geol Soc London, Spec Publ 502:. https://doi.org/10.1144/SP502-2019-132

  • Ingo GM, De Caro T, Riccucci C et al (2006) Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl Phys A Mater Sci Process 83:513–520. https://doi.org/10.1007/s00339-006-3550-z

    Article  Google Scholar 

  • Kissin SA (1992) Five-element (Ni-Co-As-Ag-Bi) Veins. Geosci Canada 19:113–124

    Google Scholar 

  • Lahlil S, Biron I, Cotte M et al (2010a) Synthesis of calcium antimonate nano-crystals by the 18th dynasty Egyptian glassmakers. Appl Phys A Mater Sci Process 98:1–8. https://doi.org/10.1007/s00339-009-5454-1

    Article  Google Scholar 

  • Lahlil S, Biron I, Cotte M, Susini J (2010b) New insight on the in situ crystallization of calcium antimonate opacified glass during the Roman period. Appl Phys A Mater Sci Process 100:683–692. https://doi.org/10.1007/s00339-010-5650-z

    Article  Google Scholar 

  • Lahlil S, Cotte M, Biron I et al (2011) Synthesizing lead antimonate in ancient and modern opaque glass. J Anal at Spectrom 26:1040–1050. https://doi.org/10.1039/c0ja00251h

    Article  Google Scholar 

  • Leslie KA, Freestone IC, Lowry D, Thirlwall M (2006) The provenance and technology of Near Eastern glass: oxygen isotopes by laser fluorination as a complement to strontium. Archaeometry 48:253–270. https://doi.org/10.1111/j.1475-4754.2006.00255.x

    Article  Google Scholar 

  • López-Ruiz C, Doak BR (eds) (2019) The Oxford handbook of the Phoenician and Punic Mediterranean. Oxford University Press, New York, USA

    Google Scholar 

  • Lü QQ, Wu Y (2019) LA-ICP-MS analysis of corroded glass beads from Southern China: tackling highly inhomogeneous archaeological glass. Sci Technol Archaeol Res 5:53–63. https://doi.org/10.1080/20548923.2019.1650467

    Article  Google Scholar 

  • Mass JL, Stone RE, Wypyski MT (1998) The mineralogical and metallurgical origins of Roman opaque colored glasses. In: Prehistory and history of glassmaking technology. American Ceramic Society, pp 121–145

  • McDonough WF, Sun S -s. (1995) The composition of the Earth. Chem Geol 120:223–253. https://doi.org/10.1016/0009-2541(94)00140-4

  • Mirti P, Davit P, Gulmini M (2002) Colourants and opacifiers in seventh and eighth century glass investigated by spectroscopic techniques. Anal Bioanal Chem 372:221–229. https://doi.org/10.1007/s00216-001-1183-9

    Article  Google Scholar 

  • Mirti P, Pace M, Negro Ponzi MM, Aceto M (2008) ICP-MS analysis of glass fragments of Parthian and Sasanian epoch from Seleucia and Veh Ardašīr (Central Iraq). Archaeometry 50:429–450. https://doi.org/10.1111/j.1475-4754.2007.00344.x

    Article  Google Scholar 

  • Moroni M, Rossetti P, Naitza S et al (2019) Factors controlling hydrothermal nickel and cobalt mineralization — some suggestions from historical ore deposits in Italy. Minerals 9:1–41. https://doi.org/10.3390/min9070429

    Article  Google Scholar 

  • Moscati S (2001) Who where the Phoenicians? In: Moscati S (ed) The Phoenicians. I.B. Tauris, London, UK, pp 17–19

  • Oikonomou A, Triantafyllidis P (2018) An archaeometric study of Archaic glass from Rhodes, Greece: technological and provenance issues. J Archaeol Sci Reports 22:493–505. https://doi.org/10.1016/j.jasrep.2018.08.004

    Article  Google Scholar 

  • Palomar T, Conde J, Peña-Poza JF (2009) Cuentas de vidro Pre-Romanas y Arqueometría: una valoración de los trabajos realizados en la Península Ibérica. Zephyrus 64:53–62

    Google Scholar 

  • Panighello S, Orsega EF, van Elteren JT, Šelih VS (2012) Analysis of polychrome Iron Age glass vessels from Mediterranean I, II and III groups by LA-ICP-MS. J Archaeol Sci 39:2945–2955. https://doi.org/10.1016/j.jas.2012.04.043

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA et al (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl J Geostand Geoanalysis 21(115):144. https://doi.org/10.1111/j.1751-908X.1997.tb00538.x

    Article  Google Scholar 

  • Pollard AM, Heron C (2008) Archaeological chemistry. The Royal Society of Chemistry, Cambridge, UK, Second

    Google Scholar 

  • Quinn J (2018) In Search of the Phoenicians. Princeton University Press, Oxford

    Book  Google Scholar 

  • Rao GV (2000) Nickel and cobalt ores: flotation. Encycl Sep Sci Acad Press New York 3491–3500. https://doi.org/10.1016/B978-0-12-409547-2.10944-8

  • Reade W, Freestone IC, Bourke S (2009) Innovation and continuity in Bronze and Iron Age glass from Pella in Jordan. In: Annales du 17e Congrès de l’Association Internationale pour l’Histoire du Verre, Anvers 2006. pp 47–54

  • Rincon JM (1993) Micristructure and microanalysis (SEM/EDX) determination of glasses from Mallorca and Menorca caves. Trab Prehist 50:263–266

    Article  Google Scholar 

  • Robinet L, Eremin K (2012) Glass. In: Edwards H, Vandenabeele P (eds) Analytical archaeometry: selected topics. RSC Publishing, Cambridge, UK, pp 268–290

    Chapter  Google Scholar 

  • Ruano Ruiz E (1995) Cuentas polícromas prerromanas decoradas con «ojos». Espac Tiempo y Forma Ser III - Hist Mediev 255–286. https://doi.org/10.5944/etfii.8.1995.4264

  • Ruano Ruiz E, Hoffman P, J. Ma R, (1995) Approximación al estudio del vidrio Prerromano: los materiales procedentes de la necrópolis Ibérica de El Cigarralejo (Mula, Murcia). Composición química de varias cuentas de collar. Trab Prehist 52:189–206

    Article  Google Scholar 

  • Russo A, Guarneri F, Xella P, Zamora López JA (eds) (2019) Carthago: the immortal myth. Electa

  • Saitowitz SJ (1996) Glass beads as indicators of contact and trade in Southern Africa ca. AD 900 - AD 1250. University of Cape Town

  • Shortland AJ, Schachner L, Freestone I, Tite M (2006a) Natron as a flux in the early vitreous materials industry: sources, beginnings and reasons for decline. J Archaeol Sci 33:521–530. https://doi.org/10.1016/j.jas.2005.09.011

    Article  Google Scholar 

  • Shortland AJ, Schroeder H (2009) Analysis of first millennium BC glass vessels and beads from the Pichvnari necropolis, Georgia. Archaeometry 51:947–965. https://doi.org/10.1111/j.1475-4754.2008.00443.x

    Article  Google Scholar 

  • Shortland AJ, Tite MS (2000) Raw Materials of glass from Amarna and implications for the origins of Egyptian glass. Archaeometry 42:141–151. https://doi.org/10.1111/j.1475-4754.2000.tb00872.x

    Article  Google Scholar 

  • Shortland AJ, Tite MS, Ewart I (2006b) Ancient exploitation and use of cobalt alums from the Western Oases of Egypt. Archaeometry 48:153–168. https://doi.org/10.1111/j.1475-4754.2006.00248.x

    Article  Google Scholar 

  • Silvestri A, Molin G, Salviulo G (2008) The coloured glass of Iulia Felix. J Archaeol Sci 35:331–341. https://doi.org/10.1016/j.jas.2007.03.010

    Article  Google Scholar 

  • Tite MS, Shortland AJ, Maniatis Y et al (2006) The composition of the soda-rich and mixed alkali plant ashes used in the production of glass. J Archaeol Sci 33:1284–1292. https://doi.org/10.1016/j.jas.2006.01.004

    Article  Google Scholar 

  • Towle A, Henderson J, Bellintani P (2001) Frattesina and Adria: report of scientific analyses of early glass from the Veneto. Padusa 37:7–68

    Google Scholar 

  • Truffa Giachet M, Gratuze B, Ozainne S et al (2019) A Phoenician glass eye bead from 7th–5th c. cal BCE Nin-Bèrè 3, Mali: compositional characterisation by LA–ICP–MS. J Archaeol Sci Reports 24:748–758. https://doi.org/10.1016/j.jasrep.2019.02.032

    Article  Google Scholar 

  • Van Strydonck M, Gratuze B, Rolland J, De Mulder G (2018) An archaeometric study of some pre-Roman glass beads from Son Mas (Mallorca, Spain). J Archaeol Sci Reports 17:491–499. https://doi.org/10.1016/j.jasrep.2017.12.003

    Article  Google Scholar 

  • Wedepohl KH, Simon K, Kronz A (2011a) Data on 61 chemical elements for the characterization of three major glass compositions in Late Antiquity and the Middle Ages. Archaeometry 53:81–102. https://doi.org/10.1111/j.1475-4754.2010.00536.x

    Article  Google Scholar 

  • Wedepohl KH, Simon K, Kronz A (2011b) The chemical composition including the Rare Earth Elements of the three major glass types of Europe and the Orient used in late antiquity and the Middle Ages. Chemie Der Erde - Geochemistry 71:289–296. https://doi.org/10.1016/j.chemer.2011.04.001

    Article  Google Scholar 

  • Wolff R, Dunkl I, Kempe U, Von Eynatten H (2015) The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany: Constraints from fluorite (U-Th-Sm)/He thermochronology. Econ Geol 110:2025–2040. https://doi.org/10.2113/econgeo.110.8.2025

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the Museum of Luz (Mourão, Alentejo) and ArqueoHoje for providing access to the archeological artefacts.

Funding

This study was funded by Fundação para a Ciência e Tecnologia and by the European Regional Development Fund and the European Social Fund (projects UIDB/04449/2020 and UIDP/04449/2020, and Ph.D. Fellowship SFRH/BD/128889/2017) and by a Concerted Research Action of Ghent University.

Author information

Authors and Affiliations

Authors

Contributions

Mafalda Costa: conceptualization, methodology, validation, formal analysis, investigation, writing—original draft, visualization; Pedro Barrulas: conceptualization, methodology, investigation, validation; Ana Margarida Arruda: conceptualization, resources, writing—review and editing; Luís Dias: conceptualization, investigation, validation; Rui Barbosa: conceptualization, resources; Peter Vandenabeele: conceptualization, methodology, writing—review and editing, funding acquisition; José Mirão: conceptualization, methodology, validation, investigation, resources, writing—review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to José Mirão.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 646 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, M., Barrulas, P., Arruda, A.M. et al. An insight into the provenance of the Phoenician-Punic glass beads of the necropolis of Vinha das Caliças (Beja, Portugal). Archaeol Anthropol Sci 13, 149 (2021). https://doi.org/10.1007/s12520-021-01390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-021-01390-5

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy