Abstract
Phoenician-Punic glass beads recovered from the necropolis of Vinha das Caliças 4 (Beja, Portugal), dated to the Iron Age, were studied by variable pressure scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (VP-SEM–EDS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).
All glass was found to be soda-lime-silica natron-based glass. Trace element and rare earth element analysis suggest that the blue, turquoise, white, and colorless glass was manufactured in the Levant region, using rather pure coastal sands, while two amber and black-colored glass beads seem to have been produced in Egypt. Although the exact manufacture location of these Phoenician-Punic glass beads remains unknown, these results are in agreement with the commercialization of raw glass produced in established primary glass workshops in the Levant and in Egypt. The procurement of cobalt ores from specific geological provinces, on the other hand, is a strong evidence of the existence of large-scale trade routes of both raw materials and finished artefacts in the Iron Age. The finished artefacts trade routes included not only the previously established Mediterranean world and sub-Saharan Africa, but also Southern Central Iberia.
Similar content being viewed by others
Data availability
The data that support the findings of this study, which are not included in the manuscript or as supplementary information (Online Resource 1) are available from the corresponding author upon reasonable request.
References
Adriano DC (2001) Arsenic. Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer-Verlag, New York, USA, pp 219–261
Arletti R, Bertoni E, Vezzalini G, Mengoli D (2011) Glass beads from Villanovian excavations in Bologna (Italy): an archaeometrical investigation. Eur J Mineral 23:959–968. https://doi.org/10.1127/0935-1221/2011/0023-2166
Arletti R, Ferrari D, Vezzalini G (2012) Pre-Roman glass from Mozia (Sicily-Italy): the first archaeometrical data. J Archaeol Sci 39:3396–3401. https://doi.org/10.1016/j.jas.2012.06.009
Arletti R, Maiorano C, Ferrari D et al (2010) The first archaeometric data on polychrome Iron Age glass from sites located in northern Italy. J Archaeol Sci 37:703–712. https://doi.org/10.1016/j.jas.2009.11.001
Arruda AM (2000) Los Fenicios en Portugal. Fenicios y mundo indígena en el centro y sur de Portugal (siglos VIII-VI a.C.). Universidad Pompeo Fabra, Barcelona
Arruda AM (2005) O 1.o milénio a.n.e. no centro e no sul de Portugal : leituras possíveis no início de um novo século. O Arqueólogo Port 4:9–156
Arruda AM, Barbosa R, Gomes F, Sousa E de (2016a) A Necrópole de Vinha das Caliças (Beja, Portugal). In: Jiménez Ávila J (ed) Sidereum Ana III - El río Guadiana y Tartessos. Consórcio de la Ciudad Monumental Histórico-Artística y Arqueológica de Mérida, Mérida, pp 187–225
Arruda AM, Pereira C, Pimenta J, et al (2016b) As contas de vidro do Porto do Sabugeiro (Muge, Salvaterra de Magos, Portugal) / glass beads from Porto do Sabugeiro (Muge, Salvaterra dos Magos, Portugal). Cuad Prehist y Arqueol 42:79–101. https://doi.org/10.15366/cupauam2016.42.002
Barceloux DG (1999) Cobalt. Clin Toxicol 37:201–2016. https://doi.org/10.1016/B978-0-12-386454-3.00832-0
Bastin ES (1939) The nickel-cobalt-native silver ore type. Econ Geol 34:1–40. https://doi.org/10.2113/gsecongeo.34.1.1
Biron I, Chopinet M-H (2013) Colouring, Decolouring and Opacifying of glass. In: Janssens K (ed) Modern Methods for analysing archaeological and historical glass, Volume I. John Wiley & Sons, Ltd, pp 49–65
Blomme A, Degryse P, Dotsika E et al (2017) Provenance of polychrome and colourless 8th–4th century BC glass from Pieria, Greece: a chemical and isotopic approach. J Archaeol Sci 78:134–146. https://doi.org/10.1016/j.jas.2016.12.003
Brems D, Degryse P (2014) Trace element analysis in provenancing Roman glass-making. Archaeometry 56:116–136. https://doi.org/10.1111/arcm.12063
Brems D, Degryse P, Hasendoncks F et al (2012) Western Mediterranean sand deposits as a raw material for Roman glass production. J Archaeol Sci 39:2897–2907. https://doi.org/10.1016/j.jas.2012.03.009
Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non Cryst Solids 179:300–308. https://doi.org/10.1016/0022-3093(94)90708-0
Bunker BC, Arnold GW, Beauchamp EK, Day DE (1983) Mechanisms for alkali leaching in mized-NaK silicate glasses. J Non Cryst Solids 58:295–322. https://doi.org/10.1016/0022-3093(83)90031-5
Ceglia A, Cosyns P, Schibille N, Meulebroeck W (2019) Unravelling provenance and recycling of late antique glass from Cyprus with trace elements. Archaeol Anthropol Sci 11:279–291. https://doi.org/10.1007/s12520-017-0542-1
Conte S, Arletti R, Henderson J et al (2018) Different glassmaking technologies in the production of Iron Age black glass from Italy and Slovakia. Archaeol Anthropol Sci 10:503–521. https://doi.org/10.1007/s12520-016-0366-4
Costa M, Arruda AM, Barbosa R et al (2019a) A micro-analytical study of the scarabs of the Necropolis of Vinha das Caliças (Portugal). Microsc Microanal 25:214–220. https://doi.org/10.1017/S143192761801560X
Costa M, Arruda AM, Dias L et al (2019b) The combined use of Raman and micro-X-ray diffraction analysis in the study of archaeological glass beads. J Raman Spectrosc 50:250–261. https://doi.org/10.1002/jrs.5446
Costa M, Barrulas P, Dias L et al (2019c) Multi-analytical approach to the study of the European glass beads found in the tombs of Kulumbimbi (Mbanza Kongo, Angola). Microchem J 149:103990. https://doi.org/10.1016/j.microc.2019.103990
Costa M, Barrulas P, Dias L et al (2020) Determining the provenance of the European glass beads of Lumbu (Mbanza Kongo, Angola). Microchem J 154:104531. https://doi.org/10.1016/j.microc.2019.104531
D’Oriano C, Dapelo S, Podda F, Cioni R (2008) Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): Setting operating conditions and instrumental performance. Period Di Mineral 77:65–74. https://doi.org/10.2451/2008PM0019
Dietler M (2009) Colonial Encounters in Iberia and the Western Mediterranean: an exploratory framework. In: Dietler M, López-Ruiz C (eds) Colonial Encounters in ancient Iberia: Phoenician, Greek, and Indigenous Relations. The University of Chicago Press, Chicago, USA, pp 3–48
Direção-Geral do Património Cultural Vinha das Caliças 4. https://arqueologia.patrimoniocultural.pt/index.php?sid=sitios&subsid=2404562. Accessed 3 May 2021
Duckworth CN, Henderson J, Rutten FJM, Nikita K (2012) Opacifiers in Late Bronze Age glasses: the use of ToF-SIMS to identify raw ingredients and production techniques. J Archaeol Sci 39:2143–2152. https://doi.org/10.1016/j.jas.2012.02.011
Eremin K, Degryse P, Erb-Satullo N, et al (2012) Iron Age glass beads from Carthage. In: Meeks N, Cartwright C, Meek A, Mongiatti A (eds) Historical technology, materials and conservation: SEM and microanalysis. Archetype Publications Ltd. in association with the British Museum, pp 30–35
Freestone IC, Leslie KA, Thirlwall M, Gorin-Rosen Y (2003) Strontium Isotopes in the investigation of early glass production: Byzantine and early Islamic glass from the Near East. Archaeometry 45:19–32. https://doi.org/10.1111/1475-4754.00094
Gallo F, Silvestri A, Molin G, et al (2014) Iron Age vessels from the Archaeological Museum of Adria (North-Eastern Italy): a textural, chemical and mineralogical study. In: Proceedings of the 39th International Symposium for Archaeometry, Leuven, 2012. pp 198–207
García-Heras M, Rincón JM, Jimeno A, Villegas MA (2005) Pre-Roman coloured glass beads from the Iberian Peninsula: a chemico-physical characterisation study. J Archaeol Sci 32:727–738. https://doi.org/10.1016/j.jas.2004.12.007
Gedzevičiūtė V, Welter N, Schüssler U, Weiss C (2009) Chemical composition and colouring agents of Roman mosaic and millefiori glass, studied by electron microprobe analysis and Raman microspectroscopy. Archaeol Anthropol Sci 1:15–29. https://doi.org/10.1007/s12520-009-0005-4
Giannini R, Freestone IC, Shortland AJ (2017) European cobalt sources identified in the production of Chinese famille rose porcelain. J Archaeol Sci 80:27–36. https://doi.org/10.1016/j.jas.2017.01.011
Gomes FB (2014) Mediterranean goods in “Post-Orientalizing” funerary contexts of Southern Portugal: some remarks on consumption, peripherality and cultural identity. In: Álvarez Martínez JM., Nogales Basarrate T, Rodà de Llanza I (eds) Actas del XVIII Congreso Internacional de Arqueología Clásica: Centro y Perifería en el Mundo Clásico. Museo Nacional de Arte Romano, Mérida, pp 435–437
Gratuze B, Janssens K (2004) Provenance analysis of glass artefacts. In: Janssens K, Van Grieken R (eds) Comprehensive analytical chemistry, 1st edn. Elsevier Science, pp 663–712
Gratuze B, Pactat I, Schibille N (2018) Changes in the signature of cobalt colorants in late antique and early Islamic glass production. Minerals 8:225. https://doi.org/10.3390/min8060225
Gratuze B, Soulier I, Blet M, Vallauri L (1996) De l’origine du cobalt: du verre à la céramique. Rev d’archéométrie 77–94. https://doi.org/10.3406/arsci.1996.939
Henderson J (2012) The provenance of ancient man-made glass: raw materials and the use of chemical and isotopic analytical techniques. In: Liritzis I, Stevenson CM (eds) Obsidian and ancient manufactured glasses. University of New Mexico Press, pp 185–201
Ikenne M, Souhassou M, Saintilan NJ, et al (2020) Cobalt-nickel-copper arsenide, sulpharsenide and sulphide mineralisation in the Bou Azzer window, Anti-Atlas, Morocco: one century of multi-disciplinary and geological investigations, mineral exploration and mining. Geol Soc London, Spec Publ 502:. https://doi.org/10.1144/SP502-2019-132
Ingo GM, De Caro T, Riccucci C et al (2006) Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl Phys A Mater Sci Process 83:513–520. https://doi.org/10.1007/s00339-006-3550-z
Kissin SA (1992) Five-element (Ni-Co-As-Ag-Bi) Veins. Geosci Canada 19:113–124
Lahlil S, Biron I, Cotte M et al (2010a) Synthesis of calcium antimonate nano-crystals by the 18th dynasty Egyptian glassmakers. Appl Phys A Mater Sci Process 98:1–8. https://doi.org/10.1007/s00339-009-5454-1
Lahlil S, Biron I, Cotte M, Susini J (2010b) New insight on the in situ crystallization of calcium antimonate opacified glass during the Roman period. Appl Phys A Mater Sci Process 100:683–692. https://doi.org/10.1007/s00339-010-5650-z
Lahlil S, Cotte M, Biron I et al (2011) Synthesizing lead antimonate in ancient and modern opaque glass. J Anal at Spectrom 26:1040–1050. https://doi.org/10.1039/c0ja00251h
Leslie KA, Freestone IC, Lowry D, Thirlwall M (2006) The provenance and technology of Near Eastern glass: oxygen isotopes by laser fluorination as a complement to strontium. Archaeometry 48:253–270. https://doi.org/10.1111/j.1475-4754.2006.00255.x
López-Ruiz C, Doak BR (eds) (2019) The Oxford handbook of the Phoenician and Punic Mediterranean. Oxford University Press, New York, USA
Lü QQ, Wu Y (2019) LA-ICP-MS analysis of corroded glass beads from Southern China: tackling highly inhomogeneous archaeological glass. Sci Technol Archaeol Res 5:53–63. https://doi.org/10.1080/20548923.2019.1650467
Mass JL, Stone RE, Wypyski MT (1998) The mineralogical and metallurgical origins of Roman opaque colored glasses. In: Prehistory and history of glassmaking technology. American Ceramic Society, pp 121–145
McDonough WF, Sun S -s. (1995) The composition of the Earth. Chem Geol 120:223–253. https://doi.org/10.1016/0009-2541(94)00140-4
Mirti P, Davit P, Gulmini M (2002) Colourants and opacifiers in seventh and eighth century glass investigated by spectroscopic techniques. Anal Bioanal Chem 372:221–229. https://doi.org/10.1007/s00216-001-1183-9
Mirti P, Pace M, Negro Ponzi MM, Aceto M (2008) ICP-MS analysis of glass fragments of Parthian and Sasanian epoch from Seleucia and Veh Ardašīr (Central Iraq). Archaeometry 50:429–450. https://doi.org/10.1111/j.1475-4754.2007.00344.x
Moroni M, Rossetti P, Naitza S et al (2019) Factors controlling hydrothermal nickel and cobalt mineralization — some suggestions from historical ore deposits in Italy. Minerals 9:1–41. https://doi.org/10.3390/min9070429
Moscati S (2001) Who where the Phoenicians? In: Moscati S (ed) The Phoenicians. I.B. Tauris, London, UK, pp 17–19
Oikonomou A, Triantafyllidis P (2018) An archaeometric study of Archaic glass from Rhodes, Greece: technological and provenance issues. J Archaeol Sci Reports 22:493–505. https://doi.org/10.1016/j.jasrep.2018.08.004
Palomar T, Conde J, Peña-Poza JF (2009) Cuentas de vidro Pre-Romanas y Arqueometría: una valoración de los trabajos realizados en la Península Ibérica. Zephyrus 64:53–62
Panighello S, Orsega EF, van Elteren JT, Šelih VS (2012) Analysis of polychrome Iron Age glass vessels from Mediterranean I, II and III groups by LA-ICP-MS. J Archaeol Sci 39:2945–2955. https://doi.org/10.1016/j.jas.2012.04.043
Pearce NJG, Perkins WT, Westgate JA et al (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl J Geostand Geoanalysis 21(115):144. https://doi.org/10.1111/j.1751-908X.1997.tb00538.x
Pollard AM, Heron C (2008) Archaeological chemistry. The Royal Society of Chemistry, Cambridge, UK, Second
Quinn J (2018) In Search of the Phoenicians. Princeton University Press, Oxford
Rao GV (2000) Nickel and cobalt ores: flotation. Encycl Sep Sci Acad Press New York 3491–3500. https://doi.org/10.1016/B978-0-12-409547-2.10944-8
Reade W, Freestone IC, Bourke S (2009) Innovation and continuity in Bronze and Iron Age glass from Pella in Jordan. In: Annales du 17e Congrès de l’Association Internationale pour l’Histoire du Verre, Anvers 2006. pp 47–54
Rincon JM (1993) Micristructure and microanalysis (SEM/EDX) determination of glasses from Mallorca and Menorca caves. Trab Prehist 50:263–266
Robinet L, Eremin K (2012) Glass. In: Edwards H, Vandenabeele P (eds) Analytical archaeometry: selected topics. RSC Publishing, Cambridge, UK, pp 268–290
Ruano Ruiz E (1995) Cuentas polícromas prerromanas decoradas con «ojos». Espac Tiempo y Forma Ser III - Hist Mediev 255–286. https://doi.org/10.5944/etfii.8.1995.4264
Ruano Ruiz E, Hoffman P, J. Ma R, (1995) Approximación al estudio del vidrio Prerromano: los materiales procedentes de la necrópolis Ibérica de El Cigarralejo (Mula, Murcia). Composición química de varias cuentas de collar. Trab Prehist 52:189–206
Russo A, Guarneri F, Xella P, Zamora López JA (eds) (2019) Carthago: the immortal myth. Electa
Saitowitz SJ (1996) Glass beads as indicators of contact and trade in Southern Africa ca. AD 900 - AD 1250. University of Cape Town
Shortland AJ, Schachner L, Freestone I, Tite M (2006a) Natron as a flux in the early vitreous materials industry: sources, beginnings and reasons for decline. J Archaeol Sci 33:521–530. https://doi.org/10.1016/j.jas.2005.09.011
Shortland AJ, Schroeder H (2009) Analysis of first millennium BC glass vessels and beads from the Pichvnari necropolis, Georgia. Archaeometry 51:947–965. https://doi.org/10.1111/j.1475-4754.2008.00443.x
Shortland AJ, Tite MS (2000) Raw Materials of glass from Amarna and implications for the origins of Egyptian glass. Archaeometry 42:141–151. https://doi.org/10.1111/j.1475-4754.2000.tb00872.x
Shortland AJ, Tite MS, Ewart I (2006b) Ancient exploitation and use of cobalt alums from the Western Oases of Egypt. Archaeometry 48:153–168. https://doi.org/10.1111/j.1475-4754.2006.00248.x
Silvestri A, Molin G, Salviulo G (2008) The coloured glass of Iulia Felix. J Archaeol Sci 35:331–341. https://doi.org/10.1016/j.jas.2007.03.010
Tite MS, Shortland AJ, Maniatis Y et al (2006) The composition of the soda-rich and mixed alkali plant ashes used in the production of glass. J Archaeol Sci 33:1284–1292. https://doi.org/10.1016/j.jas.2006.01.004
Towle A, Henderson J, Bellintani P (2001) Frattesina and Adria: report of scientific analyses of early glass from the Veneto. Padusa 37:7–68
Truffa Giachet M, Gratuze B, Ozainne S et al (2019) A Phoenician glass eye bead from 7th–5th c. cal BCE Nin-Bèrè 3, Mali: compositional characterisation by LA–ICP–MS. J Archaeol Sci Reports 24:748–758. https://doi.org/10.1016/j.jasrep.2019.02.032
Van Strydonck M, Gratuze B, Rolland J, De Mulder G (2018) An archaeometric study of some pre-Roman glass beads from Son Mas (Mallorca, Spain). J Archaeol Sci Reports 17:491–499. https://doi.org/10.1016/j.jasrep.2017.12.003
Wedepohl KH, Simon K, Kronz A (2011a) Data on 61 chemical elements for the characterization of three major glass compositions in Late Antiquity and the Middle Ages. Archaeometry 53:81–102. https://doi.org/10.1111/j.1475-4754.2010.00536.x
Wedepohl KH, Simon K, Kronz A (2011b) The chemical composition including the Rare Earth Elements of the three major glass types of Europe and the Orient used in late antiquity and the Middle Ages. Chemie Der Erde - Geochemistry 71:289–296. https://doi.org/10.1016/j.chemer.2011.04.001
Wolff R, Dunkl I, Kempe U, Von Eynatten H (2015) The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany: Constraints from fluorite (U-Th-Sm)/He thermochronology. Econ Geol 110:2025–2040. https://doi.org/10.2113/econgeo.110.8.2025
Acknowledgements
The authors would also like to thank the Museum of Luz (Mourão, Alentejo) and ArqueoHoje for providing access to the archeological artefacts.
Funding
This study was funded by Fundação para a Ciência e Tecnologia and by the European Regional Development Fund and the European Social Fund (projects UIDB/04449/2020 and UIDP/04449/2020, and Ph.D. Fellowship SFRH/BD/128889/2017) and by a Concerted Research Action of Ghent University.
Author information
Authors and Affiliations
Contributions
Mafalda Costa: conceptualization, methodology, validation, formal analysis, investigation, writing—original draft, visualization; Pedro Barrulas: conceptualization, methodology, investigation, validation; Ana Margarida Arruda: conceptualization, resources, writing—review and editing; Luís Dias: conceptualization, investigation, validation; Rui Barbosa: conceptualization, resources; Peter Vandenabeele: conceptualization, methodology, writing—review and editing, funding acquisition; José Mirão: conceptualization, methodology, validation, investigation, resources, writing—review and editing, supervision, funding acquisition.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Costa, M., Barrulas, P., Arruda, A.M. et al. An insight into the provenance of the Phoenician-Punic glass beads of the necropolis of Vinha das Caliças (Beja, Portugal). Archaeol Anthropol Sci 13, 149 (2021). https://doi.org/10.1007/s12520-021-01390-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12520-021-01390-5