login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A002624
Expansion of (1-x)^(-3) * (1-x^2)^(-2).
(Formerly M2723 N1091)
16
1, 3, 8, 16, 30, 50, 80, 120, 175, 245, 336, 448, 588, 756, 960, 1200, 1485, 1815, 2200, 2640, 3146, 3718, 4368, 5096, 5915, 6825, 7840, 8960, 10200, 11560, 13056, 14688, 16473, 18411, 20520, 22800, 25270, 27930, 30800, 33880, 37191, 40733, 44528
OFFSET
0,2
COMMENTS
Given an irregular triangular matrix M with the triangular numbers in every column shifted down twice for columns >0, A002624 = M * [1, 2, 3, ...]. Example: row 4 of triangle M = (15, 6, 1), then (15, 6, 1) dot (1, 2, 3) = a(4) = 30 = (15 + 12 + 3). - Gary W. Adamson, Mar 02 2010
The Kn21, Kn22, Kn23, Fi2 and Ze2 triangle sums of A139600 are related to the sequence given above, e.g., Ze2(n) = a(n-1) - a(n-2) - a(n-3) + 4*a(n-4), with a(n) = 0 for n <= -1. For the definitions of these triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011
8*a(n) + 16*a(n+1) + 16*a(n+2) is the number of ways to place 3 queens on an (n+6) X (n+6) chessboard so that they diagonally attack each other exactly twice. Also true for the nonexistent terms for n=-1, n=-2 and n=-3 assuming that they are zeros. In graph-theory representation they thus form the corresponding open walk (Eulerian trail) with V={1,2,3} vertices and length of 2. - Antal Pinter, Dec 31 2015
a(n) is the number of partitions of n into parts with three kinds of 1 and two kinds of 2. - Joerg Arndt, Jan 18 2016
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Steven Edwards and William Griffiths, Generalizations of Delannoy and cross polytope numbers, Fib. Q., Vol. 55, No. 4 (2017), pp. 356-366.
E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312.
E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy]
Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 20.
Antal Pinter, Numerical solution of the k=3 Queens problem, 2011, Q(n) at p.8.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n-1) = ( n^4 +10*n^3 +32*n^2 +32*n +(6*n +15)*(n mod 2) )/96.
From Antal Pinter, Oct 03 2014: (Start)
a(n) = C(n + 2, 2) + 2*C(n, 2) + 3*C(n - 2, 2) + 4*C(n - 4, 2) + ...
a(n) = Sum_{i = 1..z} i*C(n + 4 - 2i, 2) where z = (2*n + 3 + (-1)^n)/4.
a(n) = (3*(2*n + 7)*(-1)^n + 2*n^4 + 28*n^3 + 136*n^2 + 266*n + 171)/192.
(End)
a(n) = A007009(n+1) - A001752(n-1) for n>0. - Antal Pinter, Dec 27 2015
a(n) = Sum_{j=0..n+1} A006918(j). - Richard Turk, Feb 18 2016
MAPLE
A002624:=-1/(z+1)**2/(z-1)**5; # Simon Plouffe in his 1992 dissertation
MATHEMATICA
f[n_] := Block[{m = n - 1}, (m^4 + 10m^3 + 32m^2 + 32m + (6m + 15)Mod[m, 2])/96]; Table[ f[n], {n, 2, 45}]
(* Or *) CoefficientList[ Series[1/((1 - x)^3 (1 - x^2)^2), {x, 0, 44}], x] (* Robert G. Wilson v, Feb 26 2005 *)
PROG
(Magma) [( (n+1)^4 +10*(n+1)^3 +32*(n+1)^2 +32*(n+1) +(6*(n+1) +15)*((n+1) mod 2) )/96 : n in [0..50]]; // Vincenzo Librandi, Oct 08 2011
(PARI) Vec(1/(1-x)^3/(1-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Apr 19 2012
(PARI) a(n)=(n^4 + 14*n^3 + 68*n^2 + 136*n - n%2*(6*n + 21))/96 + 1 \\ Charles R Greathouse IV, Feb 18 2016
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Formula and more terms from Frank Ellermann, Mar 14 2002
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy