Saltar para o conteúdo

Espaço paracompacto

Origem: Wikipédia, a enciclopédia livre.

Em matemática, em especial na análise funcional e topologia, um espaço paracompacto é um espaço topológico no qual toda cobertura aberta admite um refinamento localmente finito.

Conceitos preliminares

[editar | editar código-fonte]

Definição 1: Um refinamento de uma cobertura de um espaço X é uma nova cobertura do mesmo espaço tal que cada conjunto da nova cobertura é um subconjunto de algum elemento da antiga cobertura. Simbolicamente, a cobertura é um refinamento da cobertura se, e somente se, para qualquer , existe algum tal que está contido em .

Definição 2: Uma cobertura aberta de um espaço topológico é localmente finita se todo ponto do espaço admite uma vizinhança aberta que intersecta apenas um número finito de elementos da cobertura. Simbolicamente, é localmente finito se, e somente se, , existe uma vizinhança de tal que o conjunto:

é finito.

O conceito de paracompacidade é uma das mais úteis generalizações de compacidade descobertas nos últimos anos. É particularmente útil para aplicações em topologia e geometria diferencial.

Muitos espaços que nos são familiares já são paracompactos. Por exemplo, todo espaço compacto é paracompacto; isto é consequência imediata da definição. Também é verdadeiro que espaços metrizáveis são paracompactos; este teorema se deve a Arthur Harold Stone. Logo, a classe dos espaços paracompactos inclui importantes classes de espaços topológicos.

Para poder observar como a paracompacidade generaliza o conceito de compacidade, recordamos a definição de compacidade:

"Um espaço é dito compacto se toda cobertura aberta de X, admite uma subcobertura finita"

Um modo equivalente de dizer isto é:

"Um espaço é compacto se toda cobertura aberta tem um refinamento finito que cobre "

Esta definição é equivalente à usual: dado um refinamento , pode-se escolher, para cada elemento de um elemento de que o contém; deste modo obtemos uma subcoleção finita de que cobre .

Esta nova formulação de compacidade é, talvez, embaraçosa, mas nos sugere um modo de generalizar:

Definição: Um espaço topológico é paracompacto se toda cobertura aberta de admite um refinamento localmente finito que cobre .

Exemplo: O espaço com a topologia induzida pela métrica, é paracompacto. Seja . Seja uma cobertura aberta de . Seja, ainda, , e para cada inteiro positivo , seja a bola aberta de raio centrada na origem. Dado , escolha um número finito de elementos de que cubra e intersecte cada uma com o conjunto aberto ; denote esta coleção finita de conjuntos abertos por . Então a coleção é um refinamento de . É claro que este refinamento é localmente finito, pois o aberto intersecta apenas um número finito de elementos de , a saber aqueles que pertencem à coleção . Finalmente, cobre , pois dado , seja o menor inteiro tal que .

Comparação com compacidade

[editar | editar código-fonte]

A paracompacidade é semelhante à compacidade nos seguintes aspectos:

  • Todo subconjunto fechado de um conjunto paracompacto é paracompacto;
  • Todo conjunto paracompacto de um espaço de Hausdorff é normal.

A paracompacidade é diferente da compacidade nos seguintes aspectos:

  • Um subconjunto paracompacto de um espaço de Hausdorff não precisa, necessariamente, ser fechado. de fato, para o caso de espaços métricos, qualquer subconjunto é paracompacto.
  • O produto cartesiano de espaços paracompactos não é, necessariamente, paracompacto. com a topologia do limite inferior, o plano de Sogenfrey, é um exemplo clássico disto.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy