Инфразвук

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Инфразву́к (от лат. infra — ниже, под)[1][2] — звуковые волны, имеющие частоту ниже воспринимаемой человеческим ухом. Поскольку обычно человеческое ухо способно слышать звуки в диапазоне частот 20—20 000 Гц, за верхнюю границу частотного диапазона инфразвука обычно принимают 20 Гц[3]. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десятки секунд.

Характеристики инфразвука

[править | править код]

Инфразвук подчиняется общим закономерностям, характерным для звуковых волн, однако обладает целым рядом особенностей, связанных с низкой частотой колебаний упругой среды[4]:

  • инфразвук имеет гораздо большие амплитуды колебаний в сравнении с равномощным слышимым человеком звуком;
  • инфразвук гораздо дальше распространяется в воздухе, поскольку поглощение инфразвука атмосферой незначительно;
  • благодаря большой длине волны для инфразвука характерно явление дифракции, вследствие чего он легко проникает в помещения и огибает преграды, задерживающие слышимые звуки;
  • инфразвук вызывает вибрацию крупных объектов, так как входит в резонанс с ними.

Перечисленные особенности инфразвука затрудняют борьбу с ним, поскольку обычные способы противошумовой борьбы (звукопоглощение, звукоизоляция, удаление от источника звука) против инфразвука малоэффективны.

Инфразвук, образующийся в море, называют одной из возможных причин появления «летучих голландцев» — судов, покинутых паникующим экипажем в открытом море в ситуации, когда физической опасности судну нет[5] (см. Бермудский треугольник, Корабль-призрак).

Источники инфразвука

[править | править код]
Российская инфразвуковая станция IS43 в Дубне, является частью Международной системы мониторинга для обнаружения ядерных испытаний[6].
Инфразвуковая станция системы обнаружения (засечки) ядерных взрывов и землетрясений[7][8][9][10]. На рисунке видны веерные фильтры, экраны микрофонов против ветровых помех, ограда, снижающая турбулентность[11].
Природные источники

Инфразвук генерируется земной корой при землетрясениях, ударах молний, при сильном ветре (инфразвуковой аэродинамический шум) во время бурь и ураганов (в последнем случае регистрация инфразвука, в том числе нарастание инфразвукового фона, — верный признак приближения шторма. В частности прибрежные сухопутные и морские животные уходят в глубь суши и воды соответственно, заслышав нарастающий инфразвуковой шум и следовательно ожидая приближение шторма)[12].

При помощи инфразвука общаются между собой киты и слоны. Инфразвук был зарегистрирован и при взрыве Челябинского метеорита в 2013 г. инфразвуковыми станциями систем обнаружения ядерных взрывов по всей Земле[13].

Техногенные источники

Техногенный инфразвук генерируется разнообразным оборудованием при колебаниях поверхностей больших размеров, мощными турбулентными потоками жидкостей и газов, при ударном возбуждении конструкций, вращательном и возвратно-поступательном движении больших масс. Основными техногенными источниками инфразвука являются тяжёлые станки, ветрогенераторы, вентиляторы, электродуговые печи, поршневые компрессоры, турбины, виброплощадки, сабвуферы, водосливные плотины, реактивные двигатели, судовые двигатели. Кроме того, инфразвук возникает при наземных, подводных и подземных взрывах.

Распространение инфразвука

[править | править код]

Для инфразвука характерно малое поглощение в различных средах, вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень большие расстояния, и инфразвук может служить предвестником бурь, ураганов, цунами. Это явление находит практическое применение при определении места сильных взрывов или положения стреляющего орудия. (Последнее может быть использовано в контрбатарейной борьбе.) Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоёв атмосферы, свойств водной среды, геодезического зондирования земной коры с дневной поверхности.

Физиологическое действие инфразвука

[править | править код]

Физиологическое действие инфразвука на живых существ (в том числе человека) зависит только от его спектральных, временных и мощностных характеристик и не зависит от того, на открытом пространстве или в помещении находится живой объект воздействия.

Патогенное действие инфразвука заключается в повреждении нервной системы (в частности головного мозга), органов эндокринной системы и внутренних органов вследствие развития тканевой гипоксии из-за ликвор-гемодинамических и микроциркуляторных нарушений.

При 180—190 дБ действие инфразвука смертельно вследствие разрыва лёгочных альвеол. Другие зоны интенсивных кратковременных воздействий вызывают синдром резко выраженного инфразвукового дискомфорта, предел переносимости которого наблюдается при 154 дБ. Исследования показали, что низкочастотные акустические колебания, в том числе и инфразвуковые, продолжительностью от 25 с до 2 мин с удельным звуковым давлением от 145 до 150 дБ в диапазоне частот от 1 до 100 Гц, вызывали у испытуемых ощущение вибрации грудной стенки, сухость в полости рта, нарушение зрения, головные боли, головокружение, тошноту, кашель, удушье[14], беспокойство в области подреберий, звон в ушах, модуляцию звуков речи, боли при глотании и некоторые другие признаки нарушений в деятельности организма[15].

Предельно допустимые уровни на рабочих местах

[править | править код]

В РФ установлены ПДУ инфразвука[16]:

Эквивалентные уровни звукового давления,

дБ,

в октавных полосах со

среднегеометрическими частотами, Гц

Эквивалентный

общий уровень

звукового

давления,

дБ

Максимальный

текущий

общий уровень

инфразвука,

дБ

2 4 8 16
100 95 90 85 100 120

Обнаружение и регистрация инфразвука

[править | править код]
Чередование зон сжатия и разрежения в продольной упругой волне

Обнаружение и регистрация инфразвука представляют определённые трудности в силу того, что из-за низкой частоты колебаний волны имеют многометровую длину и, представляя собой упругие механические колебания среды распространения, легко смешиваются с механическими колебаниями не инфразвуковой природы. Таким образом датчики инфразвука требуют защиты от наводимых ветром помех и других возмущений от близкорасположенных объектов. При этом сам инфразвук может быть зафиксирован за многие километры от его источника.

Для обнаружения инфразвука могут быть использованы устройства, основанные на принципе резонансного вибратора (струны, рупоры, трубы). Недостатком таких устройств является узкий диапазон обнаруживаемых ими частот, совпадающих с их собственной резонансной частотой, и огромные многометровые размеры, которые должны равняться или быть кратными длинам обнаруживаемых волн. Преимуществом является высокая чувствительность и КПД.

На практике для обнаружения инфразвуковых волн используют в основном компактные датчики, преобразующие акустические колебания в электрические сигналы с их дальнейшим усилением и обработкой средствами электроники[17][11][18]:

  • низкочастотные конденсаторные микрофоны свободного поля (для высокочастотного инфразвука от 0,5 Гц и выше, к примеру 40AZ - ½”, BSWA MP-201 и др.). Так как ЭДС микрофонов связана не с амплитудой движения их чувствительной мембраны, а с ускорением её движения, то при низкочастотном инфразвуке (одно колебание за несколько секунд) ЭДС в капсюлях микрофонов практически отсутствует, из-за чего низкочастотный инфразвук невозможно регистрировать микрофонами физически;
  • микробарометры (для низкочастотного инфразвука). Так как инфразвук является упругими колебаниями среды распространения, представляющими собой чередующиеся зоны сжатия-разрежения, то периодическое изменение давления (с периодичностью 1 колебание в секунды и минуты) по фронту его распространения возможно зафиксировать микробарометрами. Высокочастотный же инфразвук микробарометрами невозможно фиксировать из-за их реактивности (не успевают реагировать на столь быстрые незначительные изменения давления).

Компактные датчики инфразвука применяются в инфразвуковых станциях обнаружения и мониторинга за ядерными взрывами, в системах раннего оповещения о природных катаклизмах (бури, цунами), в шумомерах-анализаторах.

Мифы об инфразвуке

[править | править код]

В ряде кино- и телефильмов активно эксплуатируется тема инфразвукового оружия, которое физически вполне возможно, однако при его описании сценаристы попадают в невыгодное положение, поскольку слабо или вообще не знакомы с физикой излучения и приёма волн, в том числе акустических. Например, в эпизоде «Крысобой» телесериала «След» фигурирует носимый преступником автономный компактный направленный (то есть безопасный для оператора) излучатель инфразвуковых волн, встроенный в корпус компьютера-планшета, из-за которого гибнут несколько человек.

Однако такое устройство нереализуемо вследствие физических причин:[источник не указан 2755 дней] для частоты 7 Гц длина инфразвуковой волны составляет около 47 м. Величину не менее порядка этого значения должен иметь линейный размер акустического излучателя для хорошей её генерации[19]. Причём если предположить, что каким-либо образом излучатель инфразвука размером с носимый в руках планшет (линейным размером 25-30 см, много меньшим длины волны в 47 м) способен генерировать волну с интенсивностью, достаточной для летального воздействия на организм человека (например за счёт направляемой в него большой мощности), то исходя из фундаментальных свойств излучения волн его действие будет всенаправленным[20], и первой жертвой станет сам оператор такого устройства[источник не указан 2755 дней]. Кроме того, на настоящем этапе развития техники обеспечение генерирования инфразвуковых волн с достаточной для летального действия энергией является серьёзной технической проблемой[источник не указан 2755 дней]. В качестве реализуемого на сегодняшний день источника такого акустического излучения[источник не указан 2755 дней] предполагается использование мощных авиационных реактивных двигателей с резонаторами[21] либо плазменного излучателя[22], что снова исключает возможность переноса и использования такого устройства одним человеком[источник не указан 2755 дней].

Примечания

[править | править код]
  1. Б. М. Сагалович. Инфразвук // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б.В. Петровский. — 3 изд. — Москва : Советская энциклопедия, 1978. — Т. 9. Ибн-Рошд - Йордан. — 483 с. — 150 300 экз.
  2. Евтушенко А.В. Инфразвук / председ. Ю.С. Осипов и др., отв. ред. С.Л. Кравец. — Большая Российская Энциклопедия (в 30 т.). — Москва, 2008. — Т. 11. Излучение плазмы - Исламский фронт спасения. — С. 495. — 766 с. — 65 000 экз. — ISBN 978-5-85270-342-2.
  3. Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
  4. Глава 13. Инфразвук Архивная копия от 6 января 2014 на Wayback Machine, Н. Ф. Измеров, В. Ф. Кириллов. Гигиена труда / Учебник — М.: ГЭОТАР-Медиа, 2010 г. — 592 c.
  5. Мезенцев В. А. В тупиках мистики. М.: Московский рабочий, 1987.
  6. Инфразвуковые станции слежения
  7. Cебе доверяй, а других проверяй Архивная копия от 28 августа 2017 на Wayback Machine, Михайлов В. Статья, газета «Военно-промышленный курьер», № 8 (124), 01.03.2006 г.
  8. О предварительных результатах, полученных на инфразвуковой станции «Торы», Сорокин А.Г. Научная статья, журнал «Солнечно-земная физика», № 22, 2013 г. С. 77—80. УДК: 550.34.034. Изд.: «Институт солнечно-земной физики Сибирского отделения Российской академии наук» (Иркутск). ISSN: 2412-4737.
  9. Мобильные инфразвуковые группы Архивная копия от 20 апреля 2021 на Wayback Machine, Статья на сайте Кольского филиала Единой геофизической службы РАН.
  10. Новая инфразвуковая станция открылась в ВКО Архивная копия от 7 сентября 2017 на Wayback Machine, Алманов Р. 10.08.2016 г. Atameken Business Channel.
  11. 1 2 Инфразвуковые группы Архивная копия от 23 октября 2017 на Wayback Machine, Статья на сайте Кольского филиала Единой геофизической службы РАН.
  12. Инфразвук. Живые предвестники беды Архивная копия от 19 июля 2017 на Wayback Machine, Хорбченко И. Г. Звук, ультразвук, инфразвук / М.: Знание, 1986 г. — 160 с.
  13. Инфразвуковые микрофоны учатся слушать падения небольших астероидов Архивная копия от 7 апреля 2017 на Wayback Machine, 24.09.2014 г. Иллюстрированный блог со ссылками на ВП:АИ.
  14. Инфразвук // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2. (CC BY-SA 3.0)
  15. Научные основы регламентации инфразвука в медицине труда (медико-биологические аспекты) Архивная копия от 7 ноября 2013 на Wayback Machine, Куралесин Н. А. / Автореферат диссертации на соискание учёной степени доктора медицинских наук. Москва, РАМН, НИИ медицины труда — 1997 г.
  16. V. Физические факторы (за исключением ионизирующего излучения). Предельно допустимые уровни физических факторов на рабочих местах. Пункт 36. Таблица 5.5 // Санитарные правила и нормы СанПиН 1.2.3685-21. "Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания" / Попова А.Ю. — Москва: Роспотребнадзор, 2012. — 469 с.
  17. Инфразвук служит человеку Архивная копия от 19 июля 2017 на Wayback Machine, Хорбченко И. Г. Звук, ультразвук, инфразвук / М.: Знание, 1986 г. — 160 с.
  18. «Голос» вулканов похож на звук реактивных двигателей, 09.04.2009 г. Статья. МИА «Россия сегодня».
  19. § 52. Условия хорошего излучения звука Архивная копия от 12 июля 2017 на Wayback Machine, Ландсберг Г. С. Элементарный учебник физики / Том 3. Колебания и волны. Оптика. Атомная и ядерная физика // М.: Наука, 1985 г. — 656 c. Стр. 134—135.
  20. § 42. Направленное излучение Архивная копия от 19 июня 2017 на Wayback Machine Ландсберг Г. С. Элементарный учебник физики / Том 3. Колебания и волны. Оптика. Атомная и ядерная физика // М.: Наука, 1985 г. — 656 c. Стр. 112—114.
  21. Глава 11 / 11.4. Инфразвуковое оружие Архивная копия от 11 июня 2017 на Wayback Machine — В. В. Мясников. Защита от оружия массового поражения / Изд. 2, М.: «Воениздат», 1989 г.
  22. Проект "Плазменные излучатели звуковых волн". Новый оборонный заказ. Стратегии (2 апреля 2018). Дата обращения: 20 июня 2021. Архивировано 22 июня 2021 года.

Литература

[править | править код]
  • Сокол Г. И. «Особенности акустических процессов в инфразвуковом диапазоне частот». — Днепропетровск: Проминь, 2000. — 143 с. (обзор 803 источников литературы).
  • Боенко И. В., Фрайман Б. Я. Колебания сосудистой стенки при действии инфразвука. Воронеж, 1983 г., стр. 1-8. Рукопись депонирована во ВНИИМИ 16.09.83. №Д-6783.
  • Фрайман Б. Я.,Безруков В. Е. Условия, при которых осуществляется прямое действие инфразвука на стенку кровеносного сосуда. Воронеж, 1983 г. стр. 1-13. Рукопись депонирована во ВНИИТИ 13.01.83г. № 6748-83
  • Жуков А. И., Иванников А. Н., Фрайман Б. Я. О необходимости изучения пространственной структуры звукового поля при оценке действия низкочастотного шума. «Борьба с шумом и звуковой вибрацией», Москва, 1989 г., стр 53-59.
  • Жуков А. И., Иванников А.Н, Ларюков А. С., Нюнин Б. Н.,Павлов В. И., Фрайман Б. Я. Определение аномально активной зоны вредного действия инфразвуковых шумов в жилых и административных помещениях. «Проблемы акустической экологии», Ленинград, Стройиздат, 1990 г. стр. 13-21.
  • Fraiman B., Ivannikov A., Zhukov A. On the influence of infranoise fildes on humanus. «6-th Internacional Meeting on Low friguence Noise and Vibracion». 4-6 September 1991. Leiden, pp. 46—56.
  • Fraiman B., Voronin A., Fraiman E. The alternative mechanism of the infrasound influence on organism."Noise and Man −93. 6-th Internationale Congress. Nice,France,1993.Vol 2, pp 501—504.
  • Fraiman B. Mechanism of the infrasound effect in transport means. «Transport Noise — 94». St-Petersburg, Russia,1994,pp 29—32.
  • Санитарные нормы: СН 2.2.4/2.1.8.583-96 «Физические факторы производственной среды. Физические факторы окружающей природной среды. Инфразвук на рабочих местах, в жилых и общественных помещениях и на территории жилой застройки». — Утверждены Постановлением Госкомсанэпиднадзора РФ от 31.10.1996 г. № 52.