Bước tới nội dung

Hình học vi phân

Bách khoa toàn thư mở Wikipedia
Một tam giác nhúng trên mặt yên ngựa (mặt hyperbolic paraboloid), cũng như hai đường thẳng song song trên nó.

Hình học vi phân là một nhánh của toán học sử dụng các công cụ và phương pháp của phép tính vi phântích phân cũng như đại số tuyến tínhđại số đa tuyến để nghiên cứu các vấn đề của hình học. Lý thuyết về các đường cong trong mặt phẳng và không gian cũng như về các mặt cong trong không gian Euclid ba chiều đã trở thành cơ sở và cho sự phát triển ban đầu của hình học vi phân vào thế kỷ thứ 18 và 19. Cuối thế kỷ thứ 19, hình học vi phân đã phát triển thành một lĩnh vực nghiên cứu những cấu trúc hình học tổng quát trên các đa tạp khả vi. Nó cũng có liên hệ mật thiết với ngành tôpô vi phân, và là một khía cạnh hình học của lĩnh vực phương trình vi phân. Chứng minh của Grigori Perelman về giả thuyết Poincaré sử dụng kĩ thuật dòng Ricci cho thấy sức mạnh của cách tiếp cận theo phương pháp hình học vi phân trong các câu hỏi và vấn đề của tôpô học và làm nổi bật vai trò quan trọng của các phương pháp giải tích. Hình học vi phân các mặt cong cũng đã thể hiện được nhiều ý tưởng chìa khóa và các đặc trưng kĩ thuật của lĩnh vực hình học vi phân.

Lịch sử phát triển

[sửa | sửa mã nguồn]

Hình học vi phân đã được phát triển từ các nghiên cứu của Gaspard MongeCarl Friedrich Gauss trong thời gian đầu thế kỷ 19. Trong thời gian này, toán học vẫn còn được nảy sinh mạnh mẽ từ các nhu cầu thực tiễn, và những kết quả quan trọng của toán học đã được đem ứng dụng cho việc đo vẽ bản đồ, định hướng trong hàng hảikhảo sát. Chúng được phát triển từ phương pháp hình chiếu bản đồ, đường trắc địađộ cong Gauss. Cũng từ đây Gauss đã chú ý tới vấn đề tổng các góc trong một tam giác cầu không bằng 180 độ, và từ đó ông đã có những ý tưởng về hình học phi Euclid, trở thành những nhà tiên phong trong lĩnh vực hình học vi phân. Sau đó những đóng góp quan trọng cho lĩnh vực này đã được các nhà toán học bao gồm Bernhard Riemann,Elwin Bruno Christoffel, và Gregorio Ricci-Curbastro đưa ra vào cuối thế kỷ 19. Những nghiên cứu này đã được tập hợp và hệ thống hóa lại vào cuối thế kỷ 19 bởi các nhà toán học Jean Gaston DarbouxLuigi Bianchi.[1]

Các ứng dụng của hình học vi phân

[sửa | sửa mã nguồn]

Dưới đây là một số ứng dụng quan trọng của hình học vi phân trong toán học và khoa học:

Chú thích

[sửa | sửa mã nguồn]
  1. ^ “Founders of Differential Geometry”. Bản gốc lưu trữ ngày 27 tháng 8 năm 2010. Truy cập ngày 7 tháng 9 năm 2010.
  2. ^ “A selection of unusual terms found on this site”. Bản gốc lưu trữ ngày 14 tháng 2 năm 2010. Truy cập ngày 12 tháng 9 năm 2010.
  3. ^ Paul Marriott and Mark Salmon (editors), "Applications of Differential Geometry to Econometrics", Cambridge University Press; 1 edition (18 tháng 9 năm 2000).
  4. ^ Jonathan H. Manton, "On the role of differential geometry in signal processing" [1].
  5. ^ Mario Micheli, "The Differential Geometry of Landmark Shape Manifolds: Metrics, Geodesics, and Curvature", https://web.archive.org/web/20110604092900/http://www.math.ucla.edu/~micheli/PUBLICATIONS/micheli_phd.pdf

Sách tham khảo

[sửa | sửa mã nguồn]
  1. Wolfgang Kühnel (2005). Differential Geometry: Curves - Surfaces - Manifolds (ấn bản thứ 2). ISBN 0-821-83988-8.
  2. Theodore Frankel (2004). The geometry of physics: an introduction (ấn bản thứ 2). ISBN 0-521-53927-7.
  3. Spivak, Michael (1999). A Comprehensive Introduction to Differential Geometry (5 Volumes) (ấn bản thứ 3).
  4. do Carmo, Manfredo (1976). Differential Geometry of Curves and Surfaces. ISBN 0-13-212589-7. Classical geometric approach to differential geometry without tensor analysis.
  5. Kreyszig, Erwin (1991). Differential Geometry. ISBN 0-48-666721-9. Good classical geometric approach to differential geometry with tensor machinery.
  6. do Carmo, Manfredo Perdigao (1994). Riemannian Geometry. Francis Flaherty biên dịch.
  7. McCleary, John (1994). Geometry from a Differentiable Viewpoint.
  8. Bloch, Ethan D. (1996). A First Course in Geometric Topology and Differential Geometry.
  9. Gray, Alfred (1998). Modern Differential Geometry of Curves and Surfaces with Mathematica (ấn bản thứ 2).
  10. Burke, William L. (1985). Applied Differential Geometry.
  11. ter Haar Romeny, Bart M. (2003). Front-End Vision and Multi-Scale Image Analysis. ISBN 1-4020-1507-0.

Liên kết ngoài

[sửa | sửa mã nguồn]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy