Open In App

Pandas.to_datetime()-Python

Last Updated : 24 Jun, 2025
Comments
Improve
Suggest changes
Like Article
Like
Report

pandas.to_datetime() converts argument(s) to datetime. This function is essential for working with date and time data, especially when parsing strings or timestamps into Python's datetime64 format used in Pandas.

For Example:

Python
import pandas as pd
d = ['2025-06-21', '2025-06-22']
res = pd.to_datetime(d)
print(res)

Output
DatetimeIndex(['2025-06-21', '2025-06-22'], dtype='datetime64[ns]', freq=None)

Explanation: date strings are in ISO format (YYYY-MM-DD), which pandas.to_datetime() parses by default, returning a DatetimeIndex.

Syntax

pandas.to_datetime(arg, errors='raise', format=None, dayfirst=False, ...)

Parameters:

Parameter

Description

arg

Input data to convert (e.g., scalar, list, Series, DataFrame).

errors

How to handle invalid parsing: 'raise' (default), 'coerce' (sets errors to NaT), 'ignore'.

format

Custom date format for parsing (e.g. "%d/%m/%Y")

dayfirst

If True, treats the first part of the date as the day (e.g., 31/12/2025).

yearfirst

If True, treats the first part as the year (e.g., 2025-12-31).

utc

If True, returns dates in UTC timezone.

unit

Specifies time unit if input is numeric ('s', 'ms', 'ns', etc.).

origin

Reference date for numeric timestamps ('unix' or a specific date like '1960-01-01').

cache

If True, enables caching to improve performance for repeated strings.

Returns: A datetime64 dtype object, which can be a single Timestamp, DatetimeIndex or Series, depending on the input.

Examples

Example 1: In this example, we convert date strings written in DD/MM/YYYY format to datetime objects using the format parameter.

Python
import pandas as pd
d = ['21/06/2025', '22/06/2025']
res = pd.to_datetime(d, format='%d/%m/%Y')
print(res)

Output
DatetimeIndex(['2025-06-21', '2025-06-22'], dtype='datetime64[ns]', freq=None)

Explanation: pandas.to_datetime() expects dates in ISO format (YYYY-MM-DD), so we use 'format='%d/%m/%Y' to correctly parse day-first strings. It converts them into datetime objects and returns a DatetimeIndex holding datetime64 values.

Example 2: In this example, we convert a list of date strings and handle invalid entries using errors='coerce', which replaces the invalid value with NaT.

Python
import pandas as pd
d = ['2025-06-21', 'invalid']
res = pd.to_datetime(d, errors='coerce')
print(res)

Output
DatetimeIndex(['2025-06-21', 'NaT'], dtype='datetime64[ns]', freq=None)

Explanation: pandas.to_datetime() attempts to parse each string, but since 'invalid' is not a valid date, using errors='coerce' replaces it with NaT instead of raising an error, ensuring safe and error-free conversion.

Example 3: In this example, we convert a column of string dates in a DataFrame to datetime format using pd.to_datetime() for further time-based operations.

Python
import pandas as pd
df = pd.DataFrame({'date': ['2025-06-21', '2025-06-22']})
df['date'] = pd.to_datetime(df['date'])
print(df)

Output
        date
0 2025-06-21
1 2025-06-22

Explanation: pd.to_datetime() is applied to the 'date' column to convert string values into datetime objects.

Example 4: In this example, we parse dates where the day comes before the month by setting dayfirst=True.

Python
import pandas as pd
d = ['21/06/2025', '22/06/2025']
res = pd.to_datetime(d, dayfirst=True)
print(res)

Output
DatetimeIndex(['2025-06-21', '2025-06-22'], dtype='datetime64[ns]', freq=None)

Explanation: By setting dayfirst=True, pandas.to_datetime() correctly interprets the first number as the day, not the month, ensuring accurate conversion to datetime objects.

Example 5: In this example, we convert a list of integers into dates by treating them as day offsets from the origin date '2025-06-01'.

Python
import pandas as pd
d = [0, 1, 2]
res = pd.to_datetime(d, unit='D', origin='2025-06-01')
print(res)

Output
DatetimeIndex(['2025-06-01', '2025-06-02', '2025-06-03'], dtype='datetime64[ns]', freq=None)

Explanation: By setting unit='D' and specifying the origin, pandas calculates and returns the corresponding datetime values as a DatetimeIndex.

Example 6: In this example, we convert a datetime string into UTC timezone-aware datetime using utc=True.

Python
import pandas as pd
d = ['2025-06-21 12:00']
res = pd.to_datetime(d, utc=True)
print(res)

Output
DatetimeIndex(['2025-06-21 12:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None)

Explanation: By passing utc=True, pandas.to_datetime() converts the datetime into a timezone-aware datetime in UTC (Coordinated Universal Time).


Next Article

Similar Reads

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy