Some Information Measures Properties of the GOS-Concomitants from the FGM Family
Abstract
:1. Introduction
2. Generalized Order Statistics and Their Concomitants for the FGM Family
2.1. Generalized Order Statistics
- Simple order statistics with and ;
- Common record values with and ;
- Sequential order statistics with , ;
2.2. Concomitants
2.3. Concomitants of FGM Family
3. Information Measures for the Concomitants from the FGM Family, Existing Results
3.1. Shannon and Shannon-Related Entropies
3.2. Tsallis and Tsallis-Related Entropies
3.3. Fisher Information Number
3.4. Divergence Measures
4. Information Measures for the Concomitants from FGM Family, New Results
4.1. Shannon and Shannon-Related Entropies
4.2. Tsallis and Tsallis-Related Entropies
4.3. Fisher–Tsallis Information Number
4.4. Tsallis Divergence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- David, H.A. Concomitants of order statistics. Bull. Inst. Int. Statist. 1973, 45, 295–300. [Google Scholar]
- Bhattacharya, P. Convergence of sample paths of normalized sums of induced order statistics. Ann. Stat. 1974, 2, 1034–1039. [Google Scholar] [CrossRef]
- Bayramoglu, I. Reliability and mean residual life of complex systems with two dependent components per element. IEEE Trans. Reliab. 2013, 62, 276–285. [Google Scholar] [CrossRef]
- Ozkut, M. The (n − k + 1)-out-of-n concomitant system having m subcomponents and its reliability. J. Comput. Appl. Math. 2021, 386, 113251. [Google Scholar] [CrossRef]
- Scaria, J.; Mohan, S. Dependence concepts and Reliability application of concomitants of order statistics from the Morgenstern family. J. Stat. Theory Appl. 2021, 20, 193–203. [Google Scholar] [CrossRef]
- Kamps, U. A concept of generalized order statistics. J. Stat. Plan. Inference 1995, 48, 1–23. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Lai, C.D. Continuous Bivariate Distributions; Springer Science + Business Media: Berlin, Germany, 2009. [Google Scholar]
- Kotz, S.; Johnson, N.L. Propriétés de dépendance des distributions itérées généralisées à deux variables Farlie-Gumbel-Morgenstern. C. R. Acad. Sci. Paris A 1977, 285, 277–280. [Google Scholar]
- Huang, J.; Kotz, S. Correlation structure in iterated Farlie-Gumbel-Morgenstern distributions. Biometrika 1984, 71, 633–636. [Google Scholar]
- Huang, J.S.; Kotz, S. Modifications of the Farlie-Gumbel-Morgenstern distributions. A tough hill to climb. Metrika 1999, 49, 135–145. [Google Scholar] [CrossRef]
- Bairamov, I.; Kotz, S.; Bekci, M. New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics. J. Appl. Stat. 2001, 28, 521–536. [Google Scholar] [CrossRef]
- Bairamov, I.; Kotz, S. Dependence structure and symmetry of Huang-Kotz FGM distributions and their extensions. Metrika 2002, 56, 55–72. [Google Scholar] [CrossRef]
- Aggarwala, R.; Balakrishnan, N. Recurrence relations for single and product moments of progressive Type-II right censored order statistics from exponential and truncated exponential distributions. Ann. Inst. Stat. Math. 1996, 48, 757–771. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring; Statistics for Industry and Technology; Birkhäuser: Basel, Switzerland; Springer Science + Business Media: New York, NY, USA, 2014. [Google Scholar]
- Cramer, E.; Kamps, U. Marginal distributions of sequential and generalized order statistics. Metrika 2003, 58, 293–310. [Google Scholar] [CrossRef]
- Farlie, D.J.G. The performance of some correlation coefficients for a general bivariate distribution. Biometrika 1960, 47, 307–323. [Google Scholar] [CrossRef]
- Gumbel, E. Bivariate exponential distributions. J. Am. Statist. Assoc. 1960, 55, 698–707. [Google Scholar] [CrossRef]
- Morgenstern, D. Einfache Beispiele Zweidimensionaler Verteilungen. Mitt. Math. Stat. 1956, 8, 234–235. [Google Scholar]
- Johnson, N.L.; Kotz, S. On some generalized Farlie-Gumbel-Morgenstern distributions-II regression, correlation and further generalizations. Commun. Stat.-Theory Methods 1977, 6, 485–496. [Google Scholar] [CrossRef]
- Nelsen, R.B. An Introduction to Copulas; Springer Science + Business Media: New York, NY, USA, 2007. [Google Scholar]
- Beg, M.; Ahsanullah, M. Concomitants of generalized order statistics from Farlie–Gumbel–Morgenstern distributions. Stat. Methodol. 2008, 5, 1–20. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Tahmasebi, S.; Behboodian, J. Information properties for concomitants of order statistics in Farlie–Gumbel–Morgenstern (FGM) family. Commun. Stat.-Theory Methods 2012, 41, 1954–1968. [Google Scholar] [CrossRef]
- Tahmasebi, S.; Behboodian, J. Shannon information for concomitants of generalized order statistics in Farlie–Gumbel–Morgenstern (FGM) family. Bull. Malays. Math. Sci. Soc. 2012, 35, 975–981. [Google Scholar]
- Awad, A. A statistical information measure. Dirasat (Sci.) 1987, 14, 7–20. [Google Scholar]
- Ebrahimi, N.; Pellerey, F. New partial ordering of survival functions based on the notion of uncertainty. J. Appl. Probab. 1995, 32, 202–211. [Google Scholar] [CrossRef]
- Ebrahimi, N. How to measure uncertainty in the residual life time distribution. Sankhyā Indian J. Stat. Ser. A 1996, 58, 48–56. [Google Scholar]
- Di Crescenzo, A.; Longobardi, M. Entropy-based measure of uncertainty in past lifetime distributions. J. Appl. Probab. 2002, 39, 434–440. [Google Scholar] [CrossRef]
- Mohie EL-Din, M.M.; Amein, M.M.; Ali, N.S.A.; Mohamed, M.S. Residual and past entropy for concomitants of ordered random variables of Morgenstern family. J. Probab. Stat. 2015, 2015, 1–6. [Google Scholar] [CrossRef]
- Havrda, J.; Charvát, F. Quantification method of classification processes. Concept of structural a-entropy. Kybernetika 1967, 3, 30–35. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Hirica, I.E.; Pripoae, C.L.; Pripoae, G.T.; Preda, V. Weighted Relative Group Entropies and Associated Fisher Metrics. Entropy 2022, 24, 120. [Google Scholar] [CrossRef]
- Wilk, G.; Włodarczyk, Z. Example of a possible interpretation of Tsallis entropy. Phys. A Stat. Mech. Its Appl. 2008, 387, 4809–4813. [Google Scholar] [CrossRef]
- Calì, C.; Longobardi, M.; Ahmadi, J. Some properties of cumulative Tsallis entropy. Phys. A Stat. Mech. Its Appl. 2017, 486, 1012–1021. [Google Scholar] [CrossRef]
- Paul, J.; Thomas, P.Y. Tsallis entropy properties of record values. Calcutta Stat. Assoc. Bull. 2015, 67, 47–60. [Google Scholar] [CrossRef]
- Nanda, A.K.; Paul, P. Some results on generalized residual entropy. Inf. Sci. 2006, 176, 27–47. [Google Scholar] [CrossRef]
- Zografos, K. On reconsidering entropies and divergences and their cumulative counterparts: Csiszár’s, DPD’s and Fisher’s type cumulative and survival measures. Probab. Eng. Infor. Sci. 2022, 1–28. [Google Scholar] [CrossRef]
- Papaioannou, T.; Ferentinos, K. On two forms of Fisher’s measure of information. Commun. Stat.-Theory Methods 2005, 34, 1461–1470. [Google Scholar] [CrossRef]
- Frieden, B.R. Physics from Fisher information: A Unification; Cambridge University Press: New York, NY, USA, 1998. [Google Scholar]
- Tahmasebi, S.; Jafari, A.A. Fisher information number for concomitants of generalized order statistics in Morgenstern family. J. Inform. Math. Sci. 2013, 5, 15–20. [Google Scholar]
- Barbu, V.S.; Karagrigoriou, A.; Preda, V. Entropy and divergence rates for Markov chains: I. The Alpha-Gamma and Beta-Gamma case. Proc. Rom. Acad.-Ser. A 2017, 4, 293–301. [Google Scholar]
- Barbu, V.S.; Karagrigoriou, A.; Preda, V. Entropy and divergence rates for Markov chains: II. The weighted case. Proc. Rom. Acad.-Ser. A 2018, 19, 3–10. [Google Scholar]
- Barbu, V.S.; Karagrigoriou, A.; Preda, V. Entropy and divergence rates for Markov chains: III. The Cressie and Read case and applications. Proc. Rom. Acad.-Ser. A 2018, 2, 413–421. [Google Scholar]
- Villmann, T.; Haase, S. Mathematical Aspects of Divergence Based Vector Quantization Using Fréchet-Derivatives. Master’s Thesis, University of Applied Sciences Mittweida, Mittweida, Germany, 2010. [Google Scholar]
- Póczos, B.; Schneider, J. On the estimation of alpha-divergences. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 609–617. [Google Scholar]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Kullback, S. Information Theory and Statistics; Dover Publications, Inc.: Mineola, NY, USA, 1959. [Google Scholar]
- Furuichi, S.; Yanagi, K.; Kuriyama, K. Fundamental properties of Tsallis relative entropy. J. Math. Phys. 2004, 45, 4868–4877. [Google Scholar] [CrossRef]
- Furuichi, S.; Mitroi, F.C. Mathematical inequalities for some divergences. Phys. A Stat. Mech. Its Appl. 2012, 391, 388–400. [Google Scholar] [CrossRef] [Green Version]
- Vigelis, R.F.; De Andrade, L.H.; Cavalcante, C.C. Properties of a generalized divergence related to Tsallis generalized divergence. IEEE Trans. Inf. Theory 2019, 66, 2891–2897. [Google Scholar] [CrossRef]
- Awad, A.; Alawneh, A. Application of entropy to a life-time model. IMA J. Math. Control Inf. 1987, 4, 143–148. [Google Scholar] [CrossRef]
- Sfetcu, R.C.; Sfetcu, S.C.; Preda, V. Ordering Awad–Varma Entropy and Applications to Some Stochastic Models. Mathematics 2021, 9, 280. [Google Scholar] [CrossRef]
- Furuichi, S. On the maximum entropy principle and the minimization of the Fisher information in Tsallis statistics. J. Math. Phys. 2009, 50, 013303. [Google Scholar] [CrossRef]
- Bercher, J.F. Some properties of generalized Fisher information in the context of nonextensive thermostatistics. Phys. A Stat. Mech. Its Appl. 2013, 392, 3140–3154. [Google Scholar] [CrossRef]
- Kharazmi, O.; Balakrishnan, N.; Jamali, H. Cumulative Residual q-Fisher Information and Jensen-Cumulative Residual χ2 Divergence Measures. Entropy 2022, 24, 341. [Google Scholar] [CrossRef]
- Sfetcu, R.C.; Sfetcu, S.C.; Preda, V. On Tsallis and Kaniadakis Divergences. Math. Phys. Anal. Geom. 2022, 25, 1–23. [Google Scholar] [CrossRef]
- Koukoumis, C.; Karagrigoriou, A. On entropy-type measures and divergences with applications in engineering, management and applied sciences. Int. J. Math. Eng. Manag. Sci. 2021, 6, 688. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suter, F.; Cernat, I.; Drăgan, M. Some Information Measures Properties of the GOS-Concomitants from the FGM Family. Entropy 2022, 24, 1361. https://doi.org/10.3390/e24101361
Suter F, Cernat I, Drăgan M. Some Information Measures Properties of the GOS-Concomitants from the FGM Family. Entropy. 2022; 24(10):1361. https://doi.org/10.3390/e24101361
Chicago/Turabian StyleSuter, Florentina, Ioana Cernat, and Mihai Drăgan. 2022. "Some Information Measures Properties of the GOS-Concomitants from the FGM Family" Entropy 24, no. 10: 1361. https://doi.org/10.3390/e24101361
APA StyleSuter, F., Cernat, I., & Drăgan, M. (2022). Some Information Measures Properties of the GOS-Concomitants from the FGM Family. Entropy, 24(10), 1361. https://doi.org/10.3390/e24101361