Hyper-Spectral Imaging Technique in the Cultural Heritage Field: New Possible Scenarios
Abstract
:1. Introduction
2. State-of-the-Art of HSI Systems
3. HSI Application on Photographic Materials
4. HSI Application for Colorimetric Analysis of Paintings
5. Application of a New Compact and Portable HSI System
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taft, W.S.; Mayer, J.W. The Science of Paintings; Springer: New York, NY, USA, 2000. [Google Scholar]
- Pinna, D.; Galeotti, M.; Mazzeo, R. Practical Handbook on Diagnosis of Paintings on Movable Support. European Project ARTECH; Centro Di: Firenze, Italy, 2009. [Google Scholar]
- Artioli, G.; Angelini, I. Scientific Methods and Cultural Heritage: An Introduction to the Application of Materials Science to Archaeometry and Conservation Science; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Mairinger, F. UV-, IR- and X-ray- imaging. In Non-Destructive Microanalysis of Cultural Heritage Materials; Janssens, K.H.A., Grieken, R., Eds.; Wilson & Wilson Elsevier: Antwerp, Belgium, 2004; pp. 15–73. [Google Scholar]
- Van Asperen de Boer, J.R.J. Infrared reflectography: A method for the examination of paintings. Appl. Opt. 1968, 7, 1711–1714. [Google Scholar] [CrossRef] [PubMed]
- Aldrovandi, A.; Bertani, D.; Cetica, M.; Matteini, M. Multispectral image processing of paintings. Stud. Conserv. 1988, 33, 154–159. [Google Scholar]
- Schreiner, M.; Frühmann, B.; Jembrih-Simbürger, D.; Linke, R. X-rays in art and archaeology: An overview. Powder Diffr. 2004, 19, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Saunders, D.; Billinge, R.; Cupitt, J.; Atkinson, N.; Liang, H. A new camera for high-resolution infrared imaging of works of art. Stud. Conserv. 2006, 51, 277–290. [Google Scholar] [CrossRef] [Green Version]
- Hackney, S.; Townsend, J. Methods of examination and analysis. In Paint and Purpose—A Study of Technique in British Art; Hackney, S., Jones, R., Townsend, J., Eds.; Tate Gallery Publishing: London, UK, 1999; pp. 17–24. [Google Scholar]
- Striova, J.; Ruberto, C.; Barucci, M.; Blažek, J.; Kunzelman, D.; Dal Fovo, A.; Fontana, R. Spectral imaging and archival data in analysing Madonna of the Rabbit paintings by Manet and Titian. Angew. Chem. Int. Ed. 2018, 57, 7408–7412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, H. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. A 2012, 106, 309–323. [Google Scholar] [CrossRef] [Green Version]
- Cucci, C.; Delaney, J.K.; Picollo, M. Reflectance hyperspectral imaging for investigation of works of art: Old master paintings and illuminated manuscripts. Acc. Chem. Res. 2016, 49, 2070–2079. [Google Scholar] [CrossRef]
- Delaney, J.K.; Zeibel, J.G.; Thoury, M.; Littleton, R.; Palmer, M.; Morales, K.M.; de la Rie, E.R.; Hoenigswald, A. Visible and infrared imaging spectroscopy of picasso’s harlequin musician: Mapping and identification of artist materials In Situ. Appl. Spectrosc. 2010, 64, 584–594. [Google Scholar] [CrossRef]
- Mounier, A.; Daniel, A. Hyperspectral imaging for the study of two thirteenth-century italian miniatures from the marcadé collection, treasury of the saint-andre cathedral in bordeaux, france. Stud. Conserv. 2015, 60, S200–S209. [Google Scholar] [CrossRef] [Green Version]
- Cucci, C.; Webb, E.K.; Casini, A.; Ginanni, M.; Prandi, E.; Stefani, L.; Vitorino, T.; Picollo, M. Short-wave infrared reflectance hyperspectral imaging for painting investigations: A methodological study. J. Am. Inst. Conserv. 2019, 58, 16–36. [Google Scholar] [CrossRef]
- Cucci, C.; Bracci, S.; Casini, A.; Innocenti, S.; Picollo, M.; Stefani, L.; Rao, I.G.; Scudieri, M. The illuminated manuscript Corale 43 and its attribution to Beato Angelico: Non-invasive analysis by FORS, XRF and hyperspectral imaging techniques. Microchem. J. 2018, 138, 45–57. [Google Scholar] [CrossRef]
- Casini, A.; Bacci, M.; Cucci, C.; Lotti, F.; Porcinai, S.; Picollo, M.; Radicati, B.; Poggesi, M.; Stefani, L. Fiber optic reflectance spectroscopy and hyper-spectral image spectroscopy: Two integrated techniques for the study of the Madonna dei Fusi. In Optical Methods for Arts and Archaeology; Salimbeni, P., Ed.; SPIE: Bellingham, WA, USA, 2005; Volume 5857, p. 58570M-1-8. [Google Scholar]
- Janssens, K.; Dik, J.; Cotte, M.; Susini, J. Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts. Acc. Chem. Res. 2010, 43, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Romano, F.P.; Caliri, C.; Nicotra, P.; Di Martino, S.; Pappalardo, L.; Rizzo, F.; Santos, H.C. Real-time elemental imaging of large dimension paintings with a novel mobile macro X-ray fluorescence (MA-XRF) scanning technique. J. Anal. At. Spectrom. 2017, 32, 773–781. [Google Scholar] [CrossRef]
- Fukunaga, K.; Picollo, M. Characterisation of works of art. In Terahertz Spectroscopy and Imaging; Peiponen, K.E., Zeitler, A., Kuwata-Gonokami, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 171, pp. 521–538. [Google Scholar]
- Pastorelli, G.; Trafela, T.; Taday, P.F.; Portieri, A.; Lowe, D.; Fukunaga, K.; Strlič, M. Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging. Analy. Bioanal. Chem. 2012, 403, 1405–1414. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.B.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Mardia, K.V.; Kent, J.T.; Bibby, J.M. Multivariate Analysis; Academic Press: London, UK; New York, NY, USA; Toronto, ON, Canada; Sydney, Australia; San Francisco, CA, USA, 1979. [Google Scholar]
- Martens, H.; Naes, T. Multivariate Calibration; Wiley and Sons: New York, NY, USA, 1989. [Google Scholar]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv 2018, arXiv:1802.03426v2. [Google Scholar]
- Bai, D.; Messinger, D.W.; Howell, D. A hyperspectral imaging spectral unmixing and classification approach to pigment mapping in the Gough & Selden Maps. J. Am. Inst. Conserv. 2019, 58, 68–89. [Google Scholar]
- Deborah, H.; George, S.; Hardeberg, J.Y. Spectral-divergence based pigment discrimination and mapping: A case study on The Scream (1893) by Edvard Munch. J. Am. Inst. Conserv. 2019, 58, 90–107. [Google Scholar] [CrossRef] [Green Version]
- Delaney, J.K.; Picollo, M. JAIC special issue on Reflectance hyperspectral imaging to support documentation and conservation of 2D artworks. J. Am. Inst. Conserv. 2019, 58, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Lucian, A.; Lange, R.; Shing Cheung, C.; Su, B. Remote spectral imaging with simultaneous extraction of 3D topography for historical wall paintings. J. Photogramm. Remote Sens. 2014, 95, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Cucci, C.; Picollo, M.; Chiarantini, L.; Sereni, B. Hyperspectral remote sensing techniques applied to the non-invasive investigation of mural paintings: A feasibility study carried out on a wall painting by Beato Angelico in Florence. In Optics for Arts, Architecture, and Archaeology V; Pezzati, T., Ed.; SPIE: Bellingham, WA, USA, 2015; Volume 9527, p. 95270P-1-9. [Google Scholar]
- Cucci, C.; Casini, A.; Stefani, L.; Picollo, M.; Jussila, J. Bridging research with innovative products: A compact hyperspectral camera for investigating artworks: A feasibility study. In Optics for Arts, Architecture, and Archaeology VI; Pezzati, T., Ed.; SPIE: Bellingham, WA, USA, 2017; Volume 10331, p. 1033106-1-13. [Google Scholar]
- Camaiti, M.; Benvenuti, M.; Costagliola, P.; Di Benedetto, F.; Moretti, S. Hyperspectral sensors for the characterization of cultural heritage surfaces. In Sensing the Past, Geotechnologies and the Environment Series; Masini, N., Soldovieri, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 16, pp. 289–311. [Google Scholar]
- Picollo, M.; Casini, A.; Cherubini, F.; Cucci, C.; Grazzi, F.; Stefani, L. Potenzialità e problematiche dell’uso di tecniche di spettroscopia d’immagine per lo studio di pellicole fotografiche. In Memoria Fotografica. Storia di un Recupero Collettivo; Picollo, M., Cattaneo, B., Vianelli, D., Eds.; CNR Publisher: Firenze, Italy, 2020; pp. 43–46. [Google Scholar]
- Burger, W.; Burge, M.J. Principles of Digital Image Processing. Core Algorithms; Springer: London, UK, 2009; pp. 97–124. [Google Scholar]
- Berns, R.S. The science of digitizing paintings for color-accurate image archives: A review. J. Imaging Sci. Technol. 2001, 45, 305–325. [Google Scholar]
- CIE. 15:2004 Technical Report. Colorimetry, 3rd ed.; Commission International de I’Eclairage (CIE), Central Bureau of the CIE: Vienna, Austria, 2004. [Google Scholar]
- Marcus, R.T. The measurement of color. In Color for Science, Art and Technology; Nassau, K., Ed.; Elsevier: Amsterdam, The Netherland, 1998; pp. 31–96. [Google Scholar]
- Martinez, K.; Cupitt, J.; Saunders, D.; Pillay, R. Ten years of art imaging research. Proc. IEEE 2002, 90, 28–41. [Google Scholar] [CrossRef]
- Li, Q.; He, X.; Wang, Y.; Liu, H.; Xu, D.; Guo, F. Review of spectral imaging technology in biomedical engineering: Achievements and challenges. J. Biomed. Opt. 2013, 18, 100901–100928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, P.D.; Linhares, J.M.M.; Nascimento, S.M.C. Correlated color temperature preferred by observers for illumination of artistic paintings. J. Opt. Soc. Am. A 2008, 25, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montagner, C.; Linhares, J.M.M.; Vilarigues, M.; Melo, M.J.; Nascimento, S.M.C. Supporting history of art with colorimetry: The paintings of Amadeo de Souza-Cardoso. Color. Res. Appl. 2018, 43, 304–310. [Google Scholar] [CrossRef]
- Amano, K.; Linhares, J.M.M.; Nascimento, S.M.C. Color constancy of color reproductions in artpaintings. J. Opt. Soc. Am. A 2018, 35, B324–B333. [Google Scholar] [CrossRef] [Green Version]
- Casini, A.; Lotti, F.; Picollo, M.; Stefani, L.; Aldrovandi, A. Fourier transform interferometric imaging spectrometry: A new tool for the study of reflectance and fluorescence of polychrome surfaces. In Conservation Science Conference, Proceedings of the Conservation Science 2002, 18–21 September 2002, Edinburgh, UK; Townsend, J.H., Eremin, K., Adriaens, A., Eds.; Archetype: London, UK, 2003; pp. 249–253. [Google Scholar]
- Perri, A.; de Faria, B.E.N.; Ferreira, D.C.T.; Comelli, D.; Valentini, G.; Polli, D.; Cerullo, G.N.; Manzoni, C. A hyperspectral camera for conservation science, based on a birefringent ultrastable common path interferometer. In Optics for Arts, Architecture, and Archaeology VII; Pezzati, T., Ed.; SPIE: Bellingham, WA, USA, 2019; Volume 11058, p. 110580B. [Google Scholar]
- Hagen, N.; Kester, R.T.; Gao, L.; Tkaczyk, T.S. Snapshot advantage: A review of the light collection improvement for parallel high-dimensional measurement systems. Opt. Eng. 2012, 51, 1–7. [Google Scholar] [CrossRef]
- Jung, A.; Vohland, M.; Thiele-Bruhn, S. Use of a portable camera for proximal soil sensing with hyperspectral image data. Remote Sens. 2015, 7, 11434–11448. [Google Scholar] [CrossRef] [Green Version]
- Cucci, C.; Casini, A.; Picollo, M.; Poggesi, M.; Stefani, L. Open issues in hyperspectral imaging for diagnostics on paintings: When high-spectral and spatial resolution turns into data redundancy. In Optics for Arts, Architecture, and Archaeology III; Pezzati, S., Ed.; SPIE: Bellingham, WA, USA, 2011; Volume 8084, p. 808408. [Google Scholar]
- Cucci, C.; Casini, A.; Picollo, M.; Stefani, L. Extending hyperspectral imaging from Vis to NIR spectral regions: A novel scanner for the in-depth analysis of polychrome surfaces. In Optics for Arts, Architecture, and Archaeology IV; Pezzati, T., Ed.; SPIE: Bellingham, WA, USA, 2013; Volume 8790, p. 879009. [Google Scholar]
- Brandt, E.S. Analysis for spectral sensitizing dyes in photographic films by enhanced Raman scattering spectroscopy. Anal. Chem. 1989, 61, 391–398. [Google Scholar] [CrossRef]
- Digney-Peer, S.; Burnstock, A.; Leamer, T.; Khanjian, H.; Hoogland, F.; Boon, J. The migration of surfactants in acrylic emulsion paint films. Stud. Conserv. 2004, 49, 202–207. [Google Scholar] [CrossRef]
- Gaspard, S.; Oujja, M.; Rebollar, E.; Abrusci, C.; Catalina, F.; Castillejo, M. Characterization of cinematographic films by laser induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 1612–1617. [Google Scholar] [CrossRef]
- Gschwind, R.; Zbinden, E.; Trumpy, G.; Delaney, J.K. Color negatives at the demise of silver halides. In Proceedings of the Photographic Materials, ICOM-CC, 18th Triennial Conference, Copenhagen, Denmark, 4–8 September 2017. [Google Scholar]
- Belkin, M.; Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2001; Volume 14, pp. 585–591. [Google Scholar]
- Belkin, M.; Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15, 1373–1396. [Google Scholar] [CrossRef] [Green Version]
- Trumpy, G.; Flueckiger, B. Light source criteria for digitizing color films. In Proceedings of the Colour and Visual Computing Symposium (CVCS), Gjovik University College, Gjovik, Norway, 25–26 August 2015. [Google Scholar]
- Ciatti, M.; Frosinini, C. (Eds.) Il Gentile Risorto. Il “Polittico dell’Intercessione” di Gentile da Fabriano. Studi e Restauro; Edifir Edizioni Firenze: Florence, Italy, 2006. [Google Scholar]
- Sharma, G.; Wu, W.; Dalal, E.N. The ciede2000 colour-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 2005, 30, 21–30. [Google Scholar] [CrossRef]
- Behmann, J.; Acebron, K.; Emin, D.; Bennertz, S.; Matsubara, S.; Thomas, S.; Bohnenkamp, D.; Kuska, M.T.; Jussila, J.; Salo, H.; et al. Specim IQ: Evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. Sensors 2018, 18, 441. [Google Scholar] [CrossRef] [Green Version]
- Bacci, M.; Picollo, M. Non-destructive spectroscopic detection of Cobalt (II) in paintings and glasses. Stud. Conserv. 1996, 41, 136–144. [Google Scholar]
- Picollo, M.; Casini, A.; Cucci, C.; Jussila, J.; Poggesi, M.; Stefani, L. A New Compact VNIR Hyperspectral Imaging System for Non-Invasive Analysis in the Fineart and Architecture Fields. In Proceedings of the Electronic Imaging & the Visual Arts EVA2018, Florence, Italy, 9–10 May 2018; Cappellini, Ed.; Firenze University Press: Florence, Italy, 2018; pp. 69–74. [Google Scholar]
Spot | L*b | L*a | ∆L* | a*b | a*a | ∆a* | b*b | b*a | ∆b* | ∆E00 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 27.26 | 28.05 | 0.79 | 2.91 | 4.17 | 1.26 | 6.14 | 1.99 | −4.15 | 4.24 |
2 | 32.62 | 35.06 | 2.44 | 27.82 | 34.97 | 7.15 | 20.66 | 29.20 | 8.54 | 4.64 |
3 | 23.65 | 42.94 | 19.29 | 8.89 | 14.33 | 5.44 | 9.56 | 31.65 | 22.09 | 19.58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picollo, M.; Cucci, C.; Casini, A.; Stefani, L. Hyper-Spectral Imaging Technique in the Cultural Heritage Field: New Possible Scenarios. Sensors 2020, 20, 2843. https://doi.org/10.3390/s20102843
Picollo M, Cucci C, Casini A, Stefani L. Hyper-Spectral Imaging Technique in the Cultural Heritage Field: New Possible Scenarios. Sensors. 2020; 20(10):2843. https://doi.org/10.3390/s20102843
Chicago/Turabian StylePicollo, Marcello, Costanza Cucci, Andrea Casini, and Lorenzo Stefani. 2020. "Hyper-Spectral Imaging Technique in the Cultural Heritage Field: New Possible Scenarios" Sensors 20, no. 10: 2843. https://doi.org/10.3390/s20102843
APA StylePicollo, M., Cucci, C., Casini, A., & Stefani, L. (2020). Hyper-Spectral Imaging Technique in the Cultural Heritage Field: New Possible Scenarios. Sensors, 20(10), 2843. https://doi.org/10.3390/s20102843