Kinematics or Kinetics: Optimum Measurement of the Vertical Variations of the Center of Mass during Gait Initiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Walking Test
2.3. Biomechanical Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ambrose, A.F.; Cruz, L.; Paul, G. Falls and Fractures: A systematic approach to screening and prevention. Maturitas 2015, 82, 85–93. [Google Scholar] [CrossRef]
- Auvinet, B.; Berrut, G.; Touzard, C.; Moutel, L.; Collet, N.; Chaleil, D.; Barrey, E. Chute de la personne âgée: De la nécessité d’un travail en réseau. Rev. Med. Ass. Mal. 2002, 33, 183–191. [Google Scholar]
- Masud, T.; Morris, R.O. Epidemiology of falls. Age Ageing 2001, 30 (Suppl. 4), 3–7. [Google Scholar] [CrossRef]
- Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35 (Suppl. 2), ii37–ii41. [Google Scholar] [CrossRef] [Green Version]
- Robinovitch, S.N.; Feldman, F.; Yang, Y.; Schonnop, R.; Leung, P.M.; Sarraf, T.; Sims-Gould, J.; Loughin, M. Video capture of the circumstances of falls in elderly people residing in long-term care: An observational study. Lancet 2013, 381, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Mortaza, N.; Abu Osman, N.A.; Mehdikhani, N. Are the spatio-temporal parameters of gait capable of distinguishing a faller from a non-faller elderly? Eur. J. Phys. Rehabil. Med. 2014, 50, 677–691. [Google Scholar]
- Liaw, M.Y.; Chen, C.L.; Pei, Y.C.; Leong, C.P.; Lau, Y.C. Comparison of the static and dynamic balance performance in young, middle-aged, and elderly healthy people. Chang Gung Med. J. 2009, 32, 297–304. [Google Scholar]
- Bruijn, S.M.; van Dieen, J.H.; Meijer, O.G.; Beek, P.J. Is slow walking more stable? J. Biomech. 2009, 42, 1506–1512. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Krebs, D.E. Dynamic balance control in elders: Gait initiation assessment as a screening tool. Arch. Phys. Med. Rehabil. 1999, 80, 490–494. [Google Scholar]
- Chong, R.K.; Chastan, N.; Welter, M.L.; Do, M.C. Age-related changes in the center of mass velocity control during walking. Neurosci. Lett. 2009, 458, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Chastan, N.; Do, M.C.; Bonneville, F.; Torny, F.; Bloch, F.; Westby, G.W.; Dormont, D.; Agid, Y.; Welter, M.L. Gait and balance disorders in Parkinson’s disease: Impaired active braking of the fall of centre of gravity. Mov. Disord. 2009, 24, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Chastan, N.; Westby, G.W.; du Montcel, S.T.; Do, M.C.; Chong, R.K.; Agid, Y.; Welter, M.L. Influence of sensory inputs and motor demands on the control of the centre of mass velocity during gait initiation in humans. Neurosci. Lett. 2010, 469, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.; Westby, G.W.; Fernandez-Vidal, S.; Karachi, C.; Bonneville, F.; Do, M.C.; Delmaire, C.; Dormont, D.; Bardinet, E.; Agid, Y.; et al. High-level gait and balance disorders in the elderly: A midbrain disease? J. Neurol. 2014, 261, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Welter, M.L.; Do, M.C.; Chastan, N.; Torny, F.; Bloch, F.; du Montcel, S.T.; Agid, Y. Control of vertical components of gait during initiation of walking in normal adults and patients with progressive supranuclear palsy. Gait Posture 2007, 26, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Chastan, N.; Westby, G.W.; Yelnik, J.; Bardinet, E.; Do, M.C.; Agid, Y.; Welter, M.L. Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson’s disease. Brain 2009, 132 Pt 1, 172–184. [Google Scholar] [CrossRef]
- Lafond, D.; Duarte, M.; Prince, F. Comparison of three methods to estimate the center of mass during balance assessment. J. Biomech. 2004, 37, 1421–1426. [Google Scholar] [CrossRef]
- Gutierrez-Farewik, E.M.; Bartonek, A.; Saraste, H. Comparison and evaluation of two common methods to measure center of mass displacement in three dimensions during gait. Hum. Mov. Sci. 2006, 25, 238–256. [Google Scholar] [CrossRef]
- Ehara, Y.; Fujimoto, H.; Miyazaki, S.; Mochimaru, M.; Tanaka, S.; Yamamoto, S. Comparison of the performance of 3D camera systems II. Gait Posture 1997, 5, 251–255. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Mohandas Nair, P.; George Hornby, T.; Louis Behrman, A. Minimal detectable change for spatial and temporal measurements of gait after incomplete spinal cord injury. Top. Spinal Cord Inj. Rehabil. 2012, 18, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Delafontaine, A.; Gagey, O.; Colnaghi, S.; Do, M.C.; Honeine, J.L. Rigid Ankle Foot Orthosis Deteriorates Mediolateral Balance Control and Vertical Braking during Gait Initiation. Front. Hum. Neurosci. 2017, 11, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honeine, J.L.; Schieppati, M.; Gagey, O.; Do, M.C. The functional role of the triceps surae muscle during human locomotion. PLoS ONE 2013, 8, e52943. [Google Scholar] [CrossRef] [Green Version]
- Honeine, J.L.; Schieppati, M.; Gagey, O.; Do, M.C. By counteracting gravity, triceps surae sets both kinematics and kinetics of gait. Physiol. Rep. 2014, 2, e00229. [Google Scholar] [CrossRef] [PubMed]
- Gard, S.A.; Miff, S.C.; Kuo, A.D. Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Hum. Mov. Sci. 2004, 22, 597–610. [Google Scholar] [CrossRef]
- White, R.; Agouris, I.; Selbie, R.D.; Kirkpatrick, M. The variability of force platform data in normal and cerebral palsy gait. Clin. Biomech. 1999, 14, 185–192. [Google Scholar] [CrossRef]
- Konig, N.; Singh, N.B.; von Beckerath, J.; Janke, L.; Taylor, W.R. Is gait variability reliable? An assessment of spatio-temporal parameters of gait variability during continuous overground walking. Gait Posture 2014, 39, 615–617. [Google Scholar] [CrossRef]
- Moe-Nilssen, R.; Aaslund, M.K.; Hodt-Billington, C.; Helbostad, J.L. Gait variability measures may represent different constructs. Gait Posture 2010, 32, 98–101. [Google Scholar] [CrossRef]
- Cheng, Q.; Wu, M.; Wu, Y.; Hu, Y.; Kwapong, W.R.; Shi, X.; Fan, Y.; Yu, X.; He, J.; Wang, Z. Weaker braking force, a new marker of worse gait stability in Alzheimer disease. Front. Aging Neurosci. 2020, 12, 283. [Google Scholar] [CrossRef]
- Ebrahimabadi, Z.; Naimi, S.S.; Rahimi, A.; Sadeghi, H.; Hosseini, S.M.; Baghban, A.A.; Arslan, S.A. Investigating the anticipatory postural adjustment phase of gait initiation in different directions in chronic ankle instability patients. J. Bodyw. Mov. Ther. 2018, 22, 40–45. [Google Scholar] [CrossRef]
Natural Gait Condition | Fast Gait Condition | |||
---|---|---|---|---|
Kinematics | Kinetics | Kinematics | Kinetics | |
Braking Index (%) | 69.9 (18.5) | 52.0 (21.0) | 68.9 (19.6) | 54.3 (18.9) |
Gait velocity (m·s−1) | 0.99 (0.12) | 1.05 (0.13) | 1.52 (0.16) | 1.51 (0.14) |
Step length (cm) | 61.3 (6.1) | 56.1 (6.0) | 72.4 (8.9) | 65.4 (8.7) |
Mean Square | p | ||
---|---|---|---|
Braking Index | Acquisition method | 1.312 | <0.001 |
Trial condition (natural or fast) | 0.002 | 0.771 | |
Interaction: method × condition | 0.014 | 0.207 | |
Gait velocity | Acquisition method | 0.030 | 0.006 |
Trial condition (natural or fast) | 12.353 | <0.001 | |
Interaction method × condition | 0.052 | <0.001 | |
Step Length | Acquisition method | 177,890.02 | <0.001 |
Trial condition (natural or fast) | 507,554.87 | <0.001 | |
Interaction method × condition | 4083.12 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langeard, A.; Mathon, C.; Ould-Slimane, M.; Decker, L.; Bessot, N.; Gauthier, A.; Chastan, N. Kinematics or Kinetics: Optimum Measurement of the Vertical Variations of the Center of Mass during Gait Initiation. Sensors 2021, 21, 7954. https://doi.org/10.3390/s21237954
Langeard A, Mathon C, Ould-Slimane M, Decker L, Bessot N, Gauthier A, Chastan N. Kinematics or Kinetics: Optimum Measurement of the Vertical Variations of the Center of Mass during Gait Initiation. Sensors. 2021; 21(23):7954. https://doi.org/10.3390/s21237954
Chicago/Turabian StyleLangeard, Antoine, Charlotte Mathon, Mourad Ould-Slimane, Leslie Decker, Nicolas Bessot, Antoine Gauthier, and Nathalie Chastan. 2021. "Kinematics or Kinetics: Optimum Measurement of the Vertical Variations of the Center of Mass during Gait Initiation" Sensors 21, no. 23: 7954. https://doi.org/10.3390/s21237954
APA StyleLangeard, A., Mathon, C., Ould-Slimane, M., Decker, L., Bessot, N., Gauthier, A., & Chastan, N. (2021). Kinematics or Kinetics: Optimum Measurement of the Vertical Variations of the Center of Mass during Gait Initiation. Sensors, 21(23), 7954. https://doi.org/10.3390/s21237954