Spatial Variability of Soil Moisture in Relation to Land Use Types and Topographic Features on Hillslopes in the Black Soil (Mollisols) Area of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design and Soil Sampling
2.3. Data Analysis
2.3.1. Variable Calculations and Statistical Analysis
2.3.2. CCA Method
3. Results
3.1. Soil Moisture Distribution Under Different Land Use Types
3.2. Profile Distribution of SMC Variations Across Various Land Use Types
3.3. Variations of SMC Influenced by Slope Aspect
3.4. Spatial Variability of SMC Influenced by Various Slope Positions
3.5. Dominating Factors of SMC Variability by Canonical Correspondence Analysis (CCA)
4. Discussion
4.1. Spatial Patterns of Vertical SMC Variations for Different Land Use Types in the Black Soil Area of China
4.2. The Effect of Land Use Type on Soil Moisture
4.3. The Influence of Topographic Features on Soil Moisture
4.4. Comprehensive Impact Mechanism of Soil Moisture Variation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Merz, B.; Plate, E.J. An analysis of the effect of spatial variability of soil and soil moisture on runoff. Water Resour. Res. 1997, 33, 2909–2922. [Google Scholar] [CrossRef]
- Shi, H.; Shao, M.A. Soil and water loss from the Loess Plateau in China. J. Arid. Environ. 2000, 45, 9–20. [Google Scholar] [CrossRef]
- Raats, P.A.C. Developments in soil–water physics since the mid 1960s. Geoderma 2001, 100, 355–387. [Google Scholar] [CrossRef]
- Western, A.W.; Zhou, S.L.; Grayson, R.B.; McMahon, T.A.; Bloschl, G.; Wilson, D.J. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol. 2004, 286, 113–134. [Google Scholar] [CrossRef]
- Legates, D.R.; Mahmood, R.; Levia, D.F.; DeLiberty, T.L.; Quiring, S.M.; Houser, C.; Nelson, F.E. Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geog. 2011, 35, 65–86. [Google Scholar] [CrossRef]
- Zucco, G.; Brocca, L.; Moramarco, T.; Morbidelli, R. Influence of land use on soil moisture spatial-temporal variability and monitoring. J. Hydrol. 2014, 516, 193–199. [Google Scholar] [CrossRef]
- Hu, W.; Chau, H.W.; Qiu, W.W.; Si, B.C. Environmental controls on the spatial variability of soil water dynamics in a small watershed. J. Hydrol. 2017, 551, 47–55. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I. Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamies. Water Resour. Res. 2000, 36, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.J.; Wang, J.; Chen, L.D.; Qiu, Y. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. Catena 2003, 54, 197–213. [Google Scholar] [CrossRef]
- Yang, Y.; Dou, Y.X.; Liu, D.; An, S.S. Spatial pattern and heterogeneity of soil moisture along a transect in a small catchment on the Loess Plateau. J. Hydrol. 2017, 550, 466–477. [Google Scholar] [CrossRef]
- Rosenbaum, U.; Bogena, H.R.; Herbst, M.; Huisman, J.A.; Peterson, T.J.; Weuthen, A.; Western, A.W.; Vereecken, H. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.K.; Li, Z.Y.; Zhu, Q.K. Response of Soil moisture on climate characteristics based on SPI and SPEI in Loess Region of Northern Shaanxi. Trans. Chin. Soc. Agric. Mach. 2016, 47, 155–163. (In Chinese) [Google Scholar]
- Zhu, Y.J.; Shao, M.A. Variability and pattern of surface moisture on a small-scale hillslope in Liudaogou catchment on the northern Loess Plateau of China. Geoderma 2008, 147, 185–191. [Google Scholar] [CrossRef]
- Gerrits, A.M.J.; Pfister, L.; Savenije, H.H.G. Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol. Process. 2010, 24, 3011–3025. [Google Scholar] [CrossRef]
- Liang, W.L.; Hung, F.X.; Chan, M.C.; Lu, T.H. Spatial structure of surface soil water content in a natural forested headwater catchment with a subtropical monsoon climate. J. Hydrol. 2014, 516, 210–221. [Google Scholar] [CrossRef]
- Crave, A.; Gascule-Odoux, C. The influence of topography on time and space distribution of soil surface water content. Hydrol. Process. 1997, 11, 203–210. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Rudnicki, J.W.; Rodell, M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol. 1998, 210, 259–281. [Google Scholar] [CrossRef] [Green Version]
- Niemann, K.O.; Edgell, M.C.R. Preliminary analysis of spatial and temporal distribution of soil moisture on a deforested slope. Phys. Geogr. 1993, 14, 449–464. [Google Scholar] [CrossRef]
- Cantón, Y.; Sole-Benet, A.; Domingo, F. Temporal and spatial patterns of soil moisture in semiarid badlands of SE Spain. J. Hydrol. 2004, 285, 199–214. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Revealing the relative influence of soil and topographic properties on soil water content distribution at the watershed scale in two sites. J. Hydrol. 2014, 516, 107–118. [Google Scholar] [CrossRef]
- Moore, I.D.; Burch, G.J.; Mackenzie, D.H. Topographic effects on the distribution of surface soil water and the location of ephemeral gullies. Trans. ASAE 1988, 31, 1098–1107. [Google Scholar] [CrossRef]
- Guo, X.X.; Fu, Q.; Lu, H.; Gao, F.J.; Hang, Y.H. Spatial variability and its controlling factors of soil moisture on cropland-forestland mixed hillslope in Black Soil Area of Northeast China. Trans. Chin. Soc. Agric. Eng. 2018, 34, 123–130. (In Chinese) [Google Scholar]
- Penna, D.; Borga, M.; Norbiato, D.; Fontana, G.D. Hillslope scale soil moisture variability in a steep alpine terrain. J. Hydrol. 2009, 364, 311–327. [Google Scholar] [CrossRef]
- Vaezi, A.R.; Zarrinabadi, E.; Auerswald, K. Interaction of land use, slope gradient and rain sequence on runoff and soil loss from weakly aggregated semi-arid soils. Soil Tillage Res. 2017, 172, 22–31. [Google Scholar] [CrossRef]
- Yang, L.; Chen, L.D.; Wei, W. Effects of vegetation restoration on the spatial of soil moisture at the hillslope scale in semi-arid regions. Catena 2015, 124, 138–146. [Google Scholar] [CrossRef]
- Jin, S.S.; Wang, Y.K.; Wang, X.; Bai, Y.H.; Shi, L.G. Effect of pruning intensity on soil moisture and water use efficiency in jujube (Ziziphus jujube Mill.) plantations in the hilly Loess Plateau Region, China. J. Arid Land 2019, 11, 446–460. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Fu, B.J.; Wang, J.; Chen, L.D. Spatiotemporal prediction of soil moisture content using multiple-linear regression in a small catchment of the Loess Plateau, China. Catena 2003, 54, 173–195. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, J.Z.; Lin, L.R.; Wang, S. Spatial and temporal variability of soil moisture in hilly red soil region based on land use and microtopography. Trans. Chin. Soc. Agric. Eng. 2009, 25, 36–41. (In Chinese) [Google Scholar]
- Zhang, J.G.; Chen, H.S.; Su, Y.R.; Liang, H.B.; Kong, X.L.; Zhang, W. Variability of soil moisture and its relationship with environmental factors on Karst hillslope. Trans. Chin. Soc. Agric. Eng. 2010, 26, 87–93. (In Chinese) [Google Scholar]
- Su, Z.L.; Zhang, G.H.; Yu, Y. Soil moisture characteristic of different land use types in the typical Black Soil Region of Northeast China. Sci. Geogr. Sin. 2013, 33, 1104–1110. (In Chinese) [Google Scholar]
- Ge, C.P.; Zhao, J.; Wang, X.F.; Li, Y.; Zhang, X.Y. Influence of topographic factors on soil water and bulk density in a typical slope land in the Black Soil Area of Northeast China. Bull. Soil Water Conserv. 2008, 28, 16–19. (In Chinese) [Google Scholar]
- Sui, Y.Y.; Ou, Y.; Yan, B.X.; Xu, X.H.; Rousseau, A.N.; Zhang, Y. Assessment of Micro-Basin Tillage as a Soil and Water Conservation Practice in the Black Soil Region of Northeast China. PLoS ONE 2016, 11, e0152313. [Google Scholar] [CrossRef]
- Zhang, S.L.; Zhang, X.Y.; Huffman, T.; Liu, X.B.; Yang, J.Y. Soil loss, crop growth, and economic margins under different management systems on a sloping field in the Black Soil Area of Northeast China. J. Sustain. Agric. 2011, 35, 293–311. [Google Scholar] [CrossRef]
- Zou, W.X.; Han, X.Z.; Jiang, H.; Yang, C.B. Characteristics of precipitation in Black Soil Region and response of soil moisture dynamics in Northeast China. Trans. Chin. Soc. Agric. Eng. 2011, 27, 196–202. (In Chinese) [Google Scholar]
- Qiu, Y.; Fu, B.J.; Wang, J.; Chen, L.D. Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. J. Hydrol. 2001, 240, 243–263. [Google Scholar] [CrossRef]
- Yu, B.W.; Liu, G.H.; Liu, Q.S.; Wang, X.P.; Feng, J.L.; Huang, C. Soil moisture variations at different topographic domains and land use types in the semi-arid Loess Plateau, China. Catena 2018, 165, 125–132. [Google Scholar] [CrossRef]
- Odeh, I.O.A.; Chittleborough, D.J.; McBratney, A.B. Elucidation of soil-landform interrelationships by canonical ordination analysis. Geoderma 1991, 49, 1–32. [Google Scholar] [CrossRef]
- Abd el-Ghani, M.M.; Amer, W.M. Soil-vegetation relationships in a coastal desert plain of southern Sinai, Egypt. J. Arid. Environ. 2003, 55, 607–628. [Google Scholar] [CrossRef]
- Bodaghabadi, M.B.; Salehi, M.H.; Martinez-Casasnovas, J.A.; Mohammadi, J.; Toomanian, N.; Borujeni, I.E. Using Canonical Correspondence Analysis (CCA) to identify the most important DEM attributes for digital soil mapping applications. Catena 2011, 86, 66–74. [Google Scholar] [CrossRef]
- Attayde, J.L.; Bozelli, R.L. Assessing the indicator properties of zooplankton assemblages to disturbance gradients by canonical correspondence analysis. Can. J. Fish Aquat. Sci. 1998, 55, 1789–1797. [Google Scholar] [CrossRef]
- Palmer, M.W. Putting things in even better rrder: The advantages of canonical correspondence analysis. Ecology 1993, 74, 2215–2230. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Prentice, I.C. A theory of gradient analysis. Adv. Ecol. Res. 1988, 18, 271–317. [Google Scholar]
- Leps, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Ter Braak, C.J.F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 1986, 67, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, S.Q.; Han, X.Z.; Wang, F.X.; Zhang, K.Q. Soil moisture dynamics of different land-cover types in the Black Soil Regions of China. Chin. J. Eco-Agric. 2009, 17, 256–260. [Google Scholar] [CrossRef]
- Jimènez, C.C.; Tejedor, M.; Morillas, G.; Neris, J. Infiltration rate in andisols:Effect of changes in vegetation conservation cover(Tenerife Spain). J. Soil Water Conserv. 2006, 61, 153–158. [Google Scholar]
- Xu, Q.X.; Li, C.M.; Chen, H.S.; Fu, Z.Y.; Wu, P.; Wang, K.L. Characteristics of soil moisture infiltration in shrub land and terraces dryland in Karst peaks hillslopes. Trans. Chin. Soc. Agric. Eng. 2018, 34, 124–131. (In Chinese) [Google Scholar]
- Angers, D.A.; Caron, J. Plant-induced changes in soil structure: Processes and feedbacks. Biogeochemistry 1998, 42, 55–72. [Google Scholar] [CrossRef]
- Cannavo, P.; Michel, J.C. Peat particle size effects on spatial root distribution, and changes on hydraulic and aeration properties. Sci. Hortic. 2013, 151, 11–21. [Google Scholar] [CrossRef]
- Huang, Y.L.; Li, Z.B.; Su, H.; Bai, L.F.; Sun, B.Y.; Liu, C.G. Effect of man-made forest on soil moisture of different slopes in upper and lower reaches of small watershed of Loess Plateau. Trans. Chin. Soc. Agric. Eng. 2018, 34, 108–116. (In Chinese) [Google Scholar]
- Benjamin, J.G.; Mikha, M.A.; Vigil, M.R. Organic carbon effects on soil physical and hydraulic properties in a semiarid climate. Soil Sci. Soc. Am. J. 2008, 72, 1357–1362. [Google Scholar] [CrossRef] [Green Version]
- Vivoni, E.R.; Rinehart, A.J.; Mendez-Barroso, L.A.; Aragon, C.A.; Bisht, G.; Cardenas, M.B.; Engle, E.; Forman, B.A.; Frisbee, M.D.; Gutierrez-Jurado, H.A.; et al. Vegetation controls on soil moisture distribution in the Valles Caldera, New Mexico, during the North American monsoon. Ecohydrology 2008, 1, 225–238. [Google Scholar] [CrossRef]
- Venkatesh, B.; Lakshman, N.; Purandara, B.K.; Reddy, V.B. Analysis of observed soil moisture patterns under different land covers in Western Ghats, India. J. Hydrol. 2011, 397, 281–294. [Google Scholar] [CrossRef]
- Yang, D.W.; Lei, H.M.; Cong, Z.T. Overview of the research status in interaction between hydrological processes and vegetation in catchment. J. Hydraul. Eng. 2010, 41, 1142–1149. (In Chinese) [Google Scholar]
- Choi, M.; Jacobs, J.M. Soil moisture variability of root zone profiles within SMEX02 remote sensing footprints. Adv. Water Resour. 2007, 30, 883–896. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A.; Liu, Z.P. Vertical distribution and influencing factors of soil water content within 21-m profile on the Chinese Loess Plateau. Geoderma 2013, 193, 300–310. [Google Scholar] [CrossRef]
- Philip, J.R. Hillslope infiltration: Planar slopes. Water Resour. Res. 1991, 27, 109–117. [Google Scholar] [CrossRef]
- Pan, C.Z.; Shangguan, Z.P. Spatial variability of soil moisture on steep slopeland in loess hill region. Trans. Chin. Soc. Agric. Eng. 2003, 19, 5–9. (In Chinese) [Google Scholar]
- Vereecken, H.; Huisman, J.A.; Franssen, H.J.H.; Bruggemann, N.; Bogena, H.R.; Kollet, S.; Javaux, M.; van der Kruk, J.; Vanderborght, J. Soil hydrology: Recent methodological advances, challenges, and perspectives. Water Resour. Res. 2015, 51, 2616–2633. [Google Scholar] [CrossRef]
- Cho, E.; Choi, M. Regional scale spatio-temporal variability of soil moisture and its relationship with meteorological factors over the Korean peninsula. J. Hydrol. 2014, 516, 317–329. [Google Scholar] [CrossRef]
- Gwak, Y.; Kim, S. Factors affecting soil moisture spatial variability for a humid forest hillslope. Hydrol. Process. 2017, 31, 431–445. [Google Scholar] [CrossRef]
Sampling Site | Land Use Type | Altitude (m a.s.l) | Slope Aspect | Slope Position | Slope Gradient (°) |
---|---|---|---|---|---|
S1 | Soybean land | 347 | Shady slope | Top slope | 2 |
S2 | Soybean land | 338 | Shady slope | Upper slope | 2 |
S3 | Soybean land | 329 | Shady slope | Middle slope | 2 |
S4 | Soybean land | 319 | Shady slope | Lower slope | 4 |
S5 | Soybean land | 307 | Shady slope | Toe slope | 3 |
S6 | Soybean land | 328 | Sunny slope | Top slope | 1 |
S7 | Soybean land | 323 | Sunny slope | Upper slope | 1 |
S8 | Soybean land | 314 | Sunny slope | Middle slope | 2 |
S9 | Soybean land | 303 | Sunny slope | Lower slope | 2 |
S10 | Soybean land | 284 | Sunny slope | Toe slope | 2 |
S11 | Adzuki bean land | 344 | Sunny slope | Top slope | 0 |
S12 | Adzuki bean land | 331 | Sunny slope | Upper slope | 1 |
S13 | Maize land | 328 | Sunny slope | Middle slope | 4 |
S14 | Maize land | 302 | Sunny slope | Toe slope | 3 |
S15 | Forestland | 347 | Shade slope | Top slope | 0 |
S16 | Forestland | 338 | Shade slope | Upper slope | 3 |
S17 | Forestland | 327 | Shade slope | Middle slope | 2 |
S18 | Forestland | 319 | Shade slope | Lower slope | 2 |
S19 | Forestland | 309 | Shade slope | Toe slope | 1 |
S20 | Forestland | 349 | Sunny slope | Top slope | 1 |
S21 | Forestland | 339 | Sunny slope | Upper slope | 3 |
S22 | Forestland | 322 | Sunny slope | Middle slope | 2 |
S23 | Forestland | 310 | Sunny slope | Lower slope | 3 |
S24 | Forestland | 297 | Sunny slope | Toe slope | 1 |
S25 | Shrubland | 297 | Shade slope | Toe slope | 4 |
S26 | Shrubland | 300 | Shade slope | Toe slope | 3 |
S27 | Shrubland | 304 | Shade slope | Toe slope | 3 |
S28 | Grassland | 305 | Shade slope | Toe slope | 0 |
S29 | Grassland | 299 | Shade slope | Toe slope | 0 |
S30 | Grassland | 302 | Shade slope | Toe slope | 0 |
Item | Soybean Land | Adzuki Bean Land | Maize Land | Forestland | Shrubland | Grassland |
---|---|---|---|---|---|---|
Min (%) | 14.02 | 12.32 | 15.01 | 10.29 | 25.03 | 47.67 |
Max (%) | 45.90 | 21.69 | 25.14 | 22.73 | 33.90 | 55.06 |
Mean (%) | 25.65b | 17.01bc | 20.08bc | 16.95c | 28.29b | 50.94a |
Standard deviation | 8.80 | 6.63 | 7.17 | 4.27 | 4.88 | 3.77 |
CV (%) | 37.2 | 39.0 | 35.7 | 25.2 | 17.2 | 7.4 |
Item | Analyzed Area | Soybean Land | Forestland | |||
---|---|---|---|---|---|---|
Sunny Slope | Shady Slope | Sunny Slope | Shady Slope | Sunny Slope | Shady Slope | |
Mean | 18.90a | 21.69a | 22.31a | 24.99a | 15.50a | 18.40a |
coefficient of variation (CV, %) | 28.57 | 43.02 | 14.79 | 50.42 | 32.77 | 17.12 |
Depth (cm) | L1 | L2 | ||
---|---|---|---|---|
Equation | R2 | Equation | R2 | |
0–20 | y = 0.0351x + 11.412 | 0.41 | y = 0.00002x2 − 0.0232x + 28.033 | 0.91 |
20–40 | y = 0.02x + 13.809 | 0.40 | y = 0.00001x2 − 0.0144x + 24.607 | 0.78 |
40–60 | y = 0.0117x + 15.997 | 0.25 | y = 0.00001x2 −0.0151x + 24.27 | 0.83 |
0–60 | y = 0.0223x + 13.739 | 0.37 | y = 0.00001x2 − 0.0176x + 25.637 | 0.85 |
Depth (cm) | L3 | L4 | ||
Equation | R2 | Equation | R2 | |
0–20 | y = −0.0066x + 26.734 | 0.35 | y = 0.00002x2 − 0.0255x + 19.653 | 0.42 |
20–40 | y = −0.007x + 20.167 | 0.70 | y = 0.00002x2 − 0.0233x + 18.198 | 0.49 |
40–60 | y = −0.007x + 19.312 | 0.74 | y = 0.00003x2 − 0.0316x + 18.936 | 0.66 |
0–60 | y = −0.0068x + 22.071 | 0.64 | y = 0.00002x2 − 0.0268x + 18.929 | 0.52 |
Environmental Variables | Axis1 | Axis2 |
---|---|---|
Elevation | 0.28 | −0.40* |
Slope gradient | 0.87*** | 0.42* |
Slope position | −0.14 | 0.31 |
Land use | −0.47* | 0.47* |
Slope aspect | 0.05 | 0.29 |
Factors | Parts/Features | Mechanisms | Influencing Result |
---|---|---|---|
Land use type | Leaf cover | Transpiration | Consumption of soil moisture |
Rainfall distribution | Interception of precipitation, reducing surface runoff, increasing infiltration | ||
Reducing surface evaporation | Reducing surface soil moisture consumption | ||
Litter cover | Reducing evaporation of soil moisture | Reducing the consumption of Soil moisture | |
Reducing runoff, improving the physical and chemical properties of soil | Increasing soil moisture infiltration | ||
Roots | Uptake water | Consumption of soil moisture | |
Formation of priority flow through the interspersed roots | Loss of soil moisture | ||
Topography | Slope gradient | Partitioning the rainfall into runoff and infiltration | Determining the amount of runoff and infiltration; generally, the gentler the slope, the more the infiltration |
Slope aspect | Determining the amount of solar radiation received | Resulting in different soil evaporation intensities and vegetation transpiration intensities | |
Slope position | Cooperating with land use type, slope aspect, slope gradient | Comprehensive mechanism with land use types and topographical elements | |
Elevation | Impacting on the distribution of soil moisture and heat | The influencing degree on soil moisture is related to the elevation differences. The smaller the differences, the less the effect |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Fu, Q.; Hang, Y.; Lu, H.; Gao, F.; Si, J. Spatial Variability of Soil Moisture in Relation to Land Use Types and Topographic Features on Hillslopes in the Black Soil (Mollisols) Area of Northeast China. Sustainability 2020, 12, 3552. https://doi.org/10.3390/su12093552
Guo X, Fu Q, Hang Y, Lu H, Gao F, Si J. Spatial Variability of Soil Moisture in Relation to Land Use Types and Topographic Features on Hillslopes in the Black Soil (Mollisols) Area of Northeast China. Sustainability. 2020; 12(9):3552. https://doi.org/10.3390/su12093552
Chicago/Turabian StyleGuo, Xinxin, Qiang Fu, Yanhong Hang, He Lu, Fengjie Gao, and Jingbo Si. 2020. "Spatial Variability of Soil Moisture in Relation to Land Use Types and Topographic Features on Hillslopes in the Black Soil (Mollisols) Area of Northeast China" Sustainability 12, no. 9: 3552. https://doi.org/10.3390/su12093552
APA StyleGuo, X., Fu, Q., Hang, Y., Lu, H., Gao, F., & Si, J. (2020). Spatial Variability of Soil Moisture in Relation to Land Use Types and Topographic Features on Hillslopes in the Black Soil (Mollisols) Area of Northeast China. Sustainability, 12(9), 3552. https://doi.org/10.3390/su12093552