Exploiting Earth Observation Data to Impute Groundwater Level Measurements with an Extreme Learning Machine
Abstract
:1. Introduction
1.1. Challenges
1.2. Method Background and Overview
1.3. Overview of Imputation Methods
1.4. Remote Sensing Data
1.5. Extreme Learning Machine
- Fill and with random values
- Compute , using the rectifier activation function, Equation (2)
- Calculate the output weights, , by performing a least-squares fit to a vector of the response variables, .
1.6. Research Overview
2. Methods
2.1. Overview and Data Sources
2.2. Data Preparation and Interpolation
2.3. Data Imputation Using Extreme Learning Machines
- be the number of samples in the training dataset (i.e., measured time steps),
- be the number of input data time series (for our case, ),
- be a vector of length , the number of the groundwater level measurements over the training period,
- be an matrix of the input data over the training period,
- be the number of nodes in the hidden layer (for our case, h = 500),
- be vector of length ,
- be an matrix,
- be a matrix of hidden-to-output weights, and
- is the rectifier function (Equation (2)).
- •
- is a vector of length , that will contain estimated groundwater levels for a well
- ○
- M is the number of time steps to impute,
- •
- is a matrix of data used to infer groundwater depth
- ○
- is the number of input data series (17 for this paper) for imputation,
2.4. Accuracy
3. Application and Case Studies
3.1. Application
3.2. Cedar Valley, Utah Case Study
3.3. Beryl-Enterprise Area, Case Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oikonomou, P.D.; Alzraiee, A.H.; Karavitis, C.A.; Waskom, R.M. A novel framework for filling data gaps in groundwater level observations. Adv. Water Resour. 2018, 119, 111–124. [Google Scholar] [CrossRef]
- Marchant, B.; Bloomfield, J. Spatio-temporal modelling of the status of groundwater droughts. J. Hydrol. 2018, 564, 397–413. [Google Scholar] [CrossRef]
- Mogheir, Y.; De Lima, J.; Singh, V. Assessment of informativeness of groundwater monitoring in developing regions (gaza strip case study). Water Resour. Manag. 2005, 19, 737–757. [Google Scholar] [CrossRef] [Green Version]
- Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications: With R Examples; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Shumway, R.H.; Stoffer, D.S. Time series analysis and its applications. Stud. Inform. Control 2000, 9, 375–376. [Google Scholar]
- Khorasani, M.; Ehteshami, M.; Ghadimi, H.; Salari, M. Simulation and analysis of temporal changes of groundwater depth using time series modeling. Modeling Earth Syst. Environ. 2016, 2, 90. [Google Scholar] [CrossRef] [Green Version]
- Mirzavand, M.; Ghazavi, R. A stochastic modelling technique for groundwater level forecasting in an arid environment using time series methods. Water Resour. Manag. 2015, 29, 1315–1328. [Google Scholar] [CrossRef]
- Sahoo, S.; Jha, M.K. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment. Hydrogeol. J. 2013, 21, 1865–1887. [Google Scholar] [CrossRef]
- Williams, D.A.; Nelsen, B.; Berrett, C.; Williams, G.P.; Moon, T.K. A comparison of data imputation methods using bayesian compressive sensing and empirical mode decomposition for environmental temperature data. Environ. Model. Softw. 2018, 102, 172–184. [Google Scholar] [CrossRef]
- Al-Alawi, S.M.; Abdul-Wahab, S.A.; Bakheit, C.S. Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environ. Model. Softw. 2008, 23, 396–403. [Google Scholar] [CrossRef]
- Nelsen, B.; Williams, D.A.; Williams, G.P.; Berrett, C. An empirical mode-spatial model for environmental data imputation. Hydrology 2018, 5, 63. [Google Scholar] [CrossRef] [Green Version]
- Cabaneros, S.M.S.; Calautit, J.K.; Hughes, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw. 2019, 119, 285–304. [Google Scholar] [CrossRef]
- Bashir, F.; Wei, H.-L. Handling missing data in multivariate time series using a vector autoregressive model-imputation (var-im) algorithm. Neurocomputing 2018, 276, 23–30. [Google Scholar] [CrossRef]
- Rouhani, S.; Wackernagel, H.J.W.R.R. Multivariate geostatistical approach to space-time data analysis. Water Resour. Manag. 1990, 26, 585–591. [Google Scholar] [CrossRef] [Green Version]
- Bidwell, V.J.J.M. Realistic forecasting of groundwater level, based on the eigenstructure of aquifer dynamics. Math. Comput. Simul. 2005, 69, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Rado, O.; Al Fanah, M.; Taktek, E. Performance analysis of missing values imputation methods using machine learning techniques. In Intelligent Computing, Proceedings of the 2019 Computing Conference, London, UK, 16–17 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 738–750. [Google Scholar]
- Fallah-Mehdipour, E.; Haddad, O.B.; Mariño, M.A. Prediction and simulation of monthly groundwater levels by genetic programming. J. Hydro Environ. Res. 2013, 7, 253–260. [Google Scholar] [CrossRef]
- Yoon, H.; Jun, S.-C.; Hyun, Y.; Bae, G.-O.; Lee, K.-K. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J. Hydrol. 2011, 396, 128–138. [Google Scholar] [CrossRef]
- Chang, F.-J.; Chang, L.-C.; Huang, C.-W.; Kao, I.F. Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. J. Hydrol. 2016, 541, 965–976. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, Y.; Lan, S.; Wang, H. A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near lake okeechobee, florida. Water Resour. Manag. 2016, 30, 375–391. [Google Scholar] [CrossRef]
- Lettenmaier, D.P.; Alsdorf, D.; Dozier, J.; Huffman, G.J.; Pan, M.; Wood, E.F. Inroads of remote sensing into hydrologic science during the wrr era. Water Resour. Manag. 2015, 51, 7309–7342. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, Y. Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China. Theor. Appl. Climatol. 2014, 118, 429–445. [Google Scholar] [CrossRef]
- Chen, M.; Xie, P.; Janowiak, J.E.; Arkin, P.A. Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrol. 2002, 3, 249–266. [Google Scholar] [CrossRef]
- Wagner, W.; Scipal, K.; Pathe, C.; Gerten, D.; Lucht, W.; Rudolf, B. Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Thomsen, A. Evaluating evapotranspiration rates and surface conditions using landsat tm to estimate atmospheric resistance and surface resistance. Remote Sens. Environ. 2002, 79, 329–343. [Google Scholar] [CrossRef]
- Fan, Y.; Van den Dool, H. A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Ramsey, R.D.; Wright, D.L., Jr.; McGinty, C. Evaluating the use of landsat 30m enhanced thematic mapper to monitor vegetation cover in shrub-steppe environments. Geocarto Int. 2004, 19, 39–47. [Google Scholar] [CrossRef]
- Sonnenschein, R.; Kuemmerle, T.; Udelhoven, T.; Stellmes, M.; Hostert, P. Differences in landsat-based trend analyses in drylands due to the choice of vegetation estimate. Remote Sens. Environ. 2011, 115, 1408–1420. [Google Scholar] [CrossRef]
- Huang, J.; van den Dool, H.M.; Georgarakos, K.P. Analysis of model-calculated soil moisture over the united states (1931–1993) and applications to long-range temperature forecasts. J. Clim. 1996, 9, 1350–1362. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Jackson, T.J. Remote sensing of soil moisture: Implications for groundwater recharge. Hydrogeol. J. 2002, 10, 40–51. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. ManCybern. Part B (Cybern.) 2011, 42, 513–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Huang, G.-B. What are extreme learning machines? Filling the gap between frank rosenblatt’s dream and john von neumann’s puzzle. Cogn. Comput. 2015, 7, 263–278. [Google Scholar] [CrossRef]
- Zhu, W.; Miao, J.; Qing, L. Constrained extreme learning machine: A novel highly discriminative random feedforward neural network. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 800–807. [Google Scholar]
- Beran, B.; Piasecki, M. Availability and coverage of hydrologic data in the us geological survey national water information system (nwis) and us environmental protection agency storage and retrieval system (storet). Earth Sci. Inform. 2008, 1, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; National Center for Atmospheric Research Staff (Eds.) The Climate Data Guide: Palmer Drought Severity Index (pdsi). Available online: https://climatedataguide.ucar.edu/climate-data/palmer-drought-severity-index-pdsi (accessed on 9 May 2019).
- Qiao, X.; Li, Z.; Ames, D.P.; Nelson, E.J.; Swain, N.R. Simplifying the deployment of ogc web processing services (wps) for environmental modelling–introducing tethys wps server. Environ. Model. Softw. 2019, 115, 38–50. [Google Scholar] [CrossRef]
- Swain, N.R.; Christensen, S.D.; Jones, N.; Nelson, E. Tethys: A platform for water resources modeling and decision support apps. In AGU Fall Meeting Abstracts, Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
- Evans, S.W. Groundwater Level Mapping Tool: Development of a Web Application to Effectively Characterize Groundwater Resources. Master’s Thesis, Brigham Young University, Provo, UT, USA, April 2019. [Google Scholar]
- Roberts, W.; Williams, G.P.; Jackson, E.; Nelson, E.J.; Ames, D.P. Hydrostats: A python package for characterizing errors between observed and predicted time series. Hydrology 2018, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Jackson, E.K.; Roberts, W.; Nelsen, B.; Williams, G.P.; Nelson, E.J.; Ames, D.P. Introductory overview: Error metrics for hydrologic modelling–a review of common practices and an open source library to facilitate use and adoption. Environ. Model. Softw. 2019, 119, 32–48. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J. Scipy 1.0: Fundamental algorithms for scientific computing in python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Walt, S.v.d.; Colbert, S.C.; Varoquaux, G. The numpy array: A structure for efficient numerical computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Swain, N.R.; Christensen, S.D.; Snow, A.D.; Dolder, H.; Espinoza-Dávalos, G.; Goharian, E.; Jones, N.L.; Nelson, E.J.; Ames, D.P.; Burian, S.J. A new open source platform for lowering the barrier for environmental web app development. Environ. Model. Softw. 2016, 85, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, F.N.; Carlson, R.E. Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 1980, 17, 238–246. [Google Scholar] [CrossRef]
- McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 51–56. [Google Scholar]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; p. 61. [Google Scholar]
- Lu, S.; Wang, X.; Zhang, G.; Zhou, X. Effective algorithms of the moore-penrose inverse matrices for extreme learning machine. Intell. Data Anal. 2015, 19, 743–760. [Google Scholar] [CrossRef] [Green Version]
- Quenouille, M.H. Approximate tests of correlation in time-series 3. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1949; pp. 483–484. [Google Scholar]
Well ID | ME | MAPE | RMSE | R2 |
---|---|---|---|---|
Error metrics for the 2000–2015 Testing Period | ||||
Well 373236113111401 | 0.392 | 0.073 | 4.754 | 0.313 |
Well 374132113063601 | −12.253 | 0.276 | 20.657 | 0.045 |
Well 374304113052901 | 9.701 | 0.199 | 17.75 | 0.181 |
Well 374423113053301 | 4.458 | 0.13 | 8.555 | 0.255 |
Well 374927113033401 | 6.187 | 0.129 | 8.221 | 0.37 |
Error metrics for the 1995–2002 Testing Period | ||||
Well 373236113111401 | −0.101 | 0.047 | 3.615 | 0.701 |
Well 374132113063601 | −0.116 | 0.125 | 8.724 | 0.584 |
Well 374304113052901 | 1.363 | 0.097 | 9.451 | 0.672 |
Well 374423113053301 | 0.002 | 0.068 | 4.981 | 0.746 |
Well 374927113033401 | 0.224 | 0.06 | 4.332 | 0.763 |
Well ID | Measured Value | ELM Estimate | Kriging Estimate | ||
---|---|---|---|---|---|
Depth to GW (ft) | Depth to GW (ft) | (% error) | Depth to GW (ft) | (% error) | |
Well 373236113111401 | −47 | −41 | (12.9%) | −65 | − (39.0%) |
Well 374132113063601 | −99 | −96 | (2.8%) | −109 | − (10.1%) |
Well 374304113052901 | −110 | −106 | (3.1%) | −98 | (10.9%) |
Well 374423113053301 | −76 | −65 | (14.6%) | −86 | − (14.0%) |
Well 374927113033401 | −26 | −30 | − (14.1%) | −33 | − (28.1%) |
Average Error | 9.5% | 20.4% |
Well ID. | ME | MAPE | RMSE | R2 |
---|---|---|---|---|
Error metrics for the 2000–2015 Testing Period | ||||
373338113431502 | 1.57 | 0.06 | 4.00 | 0.71 |
373419113434201 | −0.23 | 0.05 | 3.02 | 0.74 |
373527113415101 | 18.53 | 0.36 | 20.29 | 0.62 |
373644113411501 | 18.24 | 0.36 | 19.28 | 0.70 |
373735113393801 | 16.25 | 0.33 | 17.96 | 0.69 |
373854113411501 | 14.81 | 0.30 | 16.29 | 0.79 |
374020113343101 | 14.25 | 0.28 | 14.86 | 0.80 |
374041113373501 | 11.30 | 0.23 | 12.66 | 0.75 |
374053113415101 | 19.95 | 0.40 | 21.39 | 0.65 |
374319113415201 | 3.02 | 0.07 | 3.70 | 0.89 |
Error metrics for the 1995–2002 Testing Period | ||||
373338113431502 | 0.23 | 0.04 | 2.38 | 0.81 |
373419113434201 | 0.57 | 0.04 | 2.74 | 0.77 |
373527113415101 | −2.44 | 0.11 | 7.07 | 0.80 |
373644113411501 | −1.19 | 0.06 | 3.93 | 0.97 |
373735113393801 | −0.71 | 0.08 | 4.56 | 0.94 |
373854113411501 | −0.98 | 0.05 | 3.12 | 0.99 |
374020113343101 | 0.07 | 0.03 | 1.92 | 0.98 |
374041113373501 | −0.08 | 0.02 | 1.40 | 0.99 |
374053113415101 | −1.02 | 0.05 | 3.30 | 0.98 |
374319113415201 | 0.28 | 0.03 | 1.68 | 0.97 |
Well ID | Measured Value | ELM Estimate | Kriging Estimate | ||
---|---|---|---|---|---|
Depth to GW (ft) | Depth to GW (ft) | (% error) | Depth to GW (ft) | (% error) | |
Well 373338113431502 | −39 | −47 | (21.8%) | −58 | (48.9%) |
Well 373419113434201 | −35 | −40 | (13.6%) | −64 | (82.6%) |
Well 373644113411501 | −246 | −211 | (14.2%) | −172 | (30.1%) |
Well 373735113393801 | −230 | −199 | (13.7%) | −222 | (3.6%) |
Well 373854113411501 | −216 | −182 | (15.7%) | −217 | − (0.6%) |
Well 374020113343101 | −192 | −172 | (10.8%) | −187 | (2.6%) |
Well 374041113373501 | −166 | −148 | (10.7%) | −176 | − (6.4%) |
Well 374053113415101 | −198 | −173 | (12.5%) | −192 | (2.9%) |
Average Error | (14.1%) | (22.2%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evans, S.; Williams, G.P.; Jones, N.L.; Ames, D.P.; Nelson, E.J. Exploiting Earth Observation Data to Impute Groundwater Level Measurements with an Extreme Learning Machine. Remote Sens. 2020, 12, 2044. https://doi.org/10.3390/rs12122044
Evans S, Williams GP, Jones NL, Ames DP, Nelson EJ. Exploiting Earth Observation Data to Impute Groundwater Level Measurements with an Extreme Learning Machine. Remote Sensing. 2020; 12(12):2044. https://doi.org/10.3390/rs12122044
Chicago/Turabian StyleEvans, Steven, Gustavious P. Williams, Norman L. Jones, Daniel P. Ames, and E. James Nelson. 2020. "Exploiting Earth Observation Data to Impute Groundwater Level Measurements with an Extreme Learning Machine" Remote Sensing 12, no. 12: 2044. https://doi.org/10.3390/rs12122044
APA StyleEvans, S., Williams, G. P., Jones, N. L., Ames, D. P., & Nelson, E. J. (2020). Exploiting Earth Observation Data to Impute Groundwater Level Measurements with an Extreme Learning Machine. Remote Sensing, 12(12), 2044. https://doi.org/10.3390/rs12122044