Post-Deepwater Horizon Oil Spill Monitoring of Louisiana Salt Marshes Using Landsat Imagery
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Landsat and AVIRIS Data Sets
2.3. Climatic (Drought and Tropical Storms) and Water Levels Information
2.4. ANCOVA Analysis
3. Results
3.1. Landsat
3.1.1. Oiling Effects
3.1.2. Effect of Annual Growth and Water Level
3.2. AVIRIS
4. Discussion
4.1. Impact of Oil Exposure on the Marsh Vegetation
4.2. Climatic Impacts on the Marshes Annual Growth
4.3. Landsat for Post-Event Monitoring
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
2005 | |||||||||||||||||||||
DOY | 42 | 82 | 98 | 106 | 114 | 122 | 130 | 138 | 154 | 170 | 194 | 202 | 258 | 282 | 290 | 298 | 306 | 314 | 322 | 354 | |
HO | NDVI | 0.26 | 0.27 | 0.31 | 0.30 | 0.34 | 0.24 | 0.31 | 0.28 | 0.33 | 0.29 | 0.35 | 0.30 | 0.33 | 0.29 | 0.31 | 0.25 | 0.29 | 0.24 | 0.31 | 0.27 |
SD | 0.08 | 0.11 | 0.10 | 0.12 | 0.11 | 0.10 | 0.10 | 0.10 | 0.11 | 0.11 | 0.10 | 0.11 | 0.09 | 0.08 | 0.08 | 0.09 | 0.09 | 0.07 | 0.10 | 0.08 | |
NO | NDVI | 0.30 | 0.34 | 0.36 | 0.33 | 0.36 | 0.29 | 0.36 | 0.31 | 0.39 | 0.33 | 0.33 | 0.31 | 0.31 | 0.26 | 0.25 | 0.24 | 0.25 | 0.23 | 0.27 | 0.25 |
SD | 0.11 | 0.15 | 0.15 | 0.15 | 0.16 | 0.14 | 0.16 | 0.15 | 0.14 | 0.15 | 0.13 | 0.14 | 0.10 | 0.08 | 0.09 | 0.09 | 0.09 | 0.08 | 0.10 | 0.09 | |
2006 | |||||||||||||||||||||
DOY | 5 | 61 | 85 | 117 | 133 | 165 | 173 | 181 | 245 | 269 | 285 | 301 | 309 | 317 | 325 | 357 | - | - | - | - | |
HO | NDVI | 0.23 | 0.32 | 0.25 | 0.28 | 0.26 | 0.27 | 0.31 | 0.28 | 0.36 | 0.40 | 0.37 | 0.33 | 0.31 | 0.34 | 0.31 | 0.32 | - | - | - | - |
SD | 0.07 | 0.07 | 0.08 | 0.09 | 0.09 | 0.07 | 0.09 | 0.08 | 0.10 | 0.12 | 0.12 | 0.13 | 0.11 | 0.10 | 0.12 | 0.10 | - | - | - | - | |
NO | NDVI | 0.23 | 0.29 | 0.27 | 0.30 | 0.30 | 0.28 | 0.36 | 0.30 | 0.40 | 0.38 | 0.35 | 0.30 | 0.30 | 0.35 | 0.30 | 0.30 | - | - | - | - |
SD | 0.08 | 0.09 | 0.09 | 0.12 | 0.12 | 0.10 | 0.10 | 0.09 | 0.11 | 0.12 | 0.12 | 0.12 | 0.10 | 0.10 | 0.11 | 0.10 | - | - | - | - | |
2007 | |||||||||||||||||||||
DOY | 8 | 48 | 64 | 88 | 96 | 112 | 120 | 192 | 224 | 232 | 312 | 344 | - | - | - | - | - | - | - | - | |
HO | NDVI | 0.23 | 0.26 | 0.29 | 0.30 | 0.31 | 0.25 | 0.29 | 0.29 | 0.34 | 0.38 | 0.32 | 0.31 | - | - | - | - | - | - | - | - |
SD | 0.09 | 0.09 | 0.10 | 0.12 | 0.11 | 0.12 | 0.13 | 0.13 | 0.10 | 0.14 | 0.10 | 0.09 | - | - | - | - | - | - | - | - | |
NO | NDVI | 0.25 | 0.24 | 0.28 | 0.32 | 0.31 | 0.27 | 0.30 | 0.31 | 0.35 | 0.38 | 0.33 | 0.32 | - | - | - | - | - | - | - | - |
SD | 0.10 | 0.10 | 0.12 | 0.14 | 0.13 | 0.12 | 0.11 | 0.14 | 0.11 | 0.14 | 0.11 | 0.11 | - | - | - | - | - | - | - | - | |
2008 | |||||||||||||||||||||
DOY | 59 | 83 | 99 | 115 | 147 | 163 | 179 | 195 | 203 | 227 | 235 | 243 | 275 | 299 | 307 | 315 | 323 | 347 | - | - | |
HO | NDVI | 0.26 | 0.27 | 0.25 | 0.27 | 0.27 | 0.29 | 0.29 | 0.28 | 0.28 | 0.29 | 0.25 | 0.33 | 0.26 | 0.30 | 0.29 | 0.27 | 0.25 | 0.24 | - | - |
SD | 0.10 | 0.10 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 | 0.11 | 0.10 | 0.09 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 | 0.09 | - | - | |
NO | NDVI | 0.28 | 0.29 | 0.28 | 0.27 | 0.27 | 0.29 | 0.30 | 0.26 | 0.34 | 0.31 | 0.26 | 0.34 | 0.24 | 0.31 | 0.28 | 0.29 | 0.26 | 0.25 | - | - |
SD | 0.13 | 0.13 | 0.15 | 0.11 | 0.14 | 0.13 | 0.14 | 0.12 | 0.12 | 0.12 | 0.10 | 0.12 | 0.09 | 0.10 | 0.11 | 0.10 | 0.10 | 0.10 | - | - | |
2009 | |||||||||||||||||||||
DOY | 13 | 21 | 29 | 37 | 61 | 77 | 93 | 149 | 157 | 173 | 181 | 237 | 245 | 285 | 293 | 309 | 317 | 365 | - | - | |
HO | NDVI | 0.24 | 0.22 | 0.17 | 0.23 | 0.22 | 0.25 | 0.24 | 0.26 | 0.27 | 0.22 | 0.28 | 0.38 | 0.34 | 0.41 | 0.35 | 0.34 | 0.37 | 0.26 | - | - |
SD | 0.08 | 0.07 | 0.06 | 0.07 | 0.08 | 0.08 | 0.09 | 0.10 | 0.09 | 0.10 | 0.10 | 0.14 | 0.12 | 0.12 | 0.13 | 0.11 | 0.12 | 0.10 | - | - | |
NO | NDVI | 0.25 | 0.21 | 0.21 | 0.25 | 0.22 | 0.29 | 0.27 | 0.29 | 0.30 | 0.26 | 0.29 | 0.41 | 0.34 | 0.40 | 0.35 | 0.33 | 0.32 | 0.25 | - | - |
SD | 0.10 | 0.10 | 0.08 | 0.09 | 0.10 | 0.11 | 0.11 | 0.12 | 0.13 | 0.12 | 0.11 | 0.14 | 0.12 | 0.12 | 0.14 | 0.13 | 0.13 | 0.11 | - | - | |
2010 | |||||||||||||||||||||
DOY | 48 | 56 | 64 | 88 | 144 | 152 | 168 | 280 | 288 | 296 | 312 | 328 | 336 | 344 | - | - | - | - | - | - | |
HO | NDVI | 0.21 | 0.25 | 0.25 | 0.26 | 0.34 | 0.33 | 0.35 | 0.38 | 0.39 | 0.33 | 0.28 | 0.28 | 0.31 | 0.28 | - | - | - | - | - | - |
SD | 0.08 | 0.09 | 0.09 | 0.10 | 0.12 | 0.12 | 0.11 | 0.13 | 0.13 | 0.12 | 0.11 | 0.11 | 0.10 | 0.10 | - | - | - | - | - | - | |
NO | NDVI | 0.22 | 0.25 | 0.23 | 0.27 | 0.37 | 0.40 | 0.41 | 0.39 | 0.40 | 0.37 | 0.37 | 0.34 | 0.34 | 0.33 | - | - | - | - | - | - |
SD | 0.10 | 0.10 | 0.10 | 0.13 | 0.12 | 0.15 | 0.15 | 0.14 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 | - | - | - | - | - | - | |
2011 | |||||||||||||||||||||
DOY | 3 | 43 | 75 | 83 | 91 | 99 | 107 | 131 | 155 | 171 | 211 | 219 | 227 | 235 | 251 | 259 | 299 | 315 | 323 | - | |
HO | NDVI | 0.25 | 0.24 | 0.26 | 0.22 | 0.28 | 0.25 | 0.23 | 0.21 | 0.24 | 0.25 | 0.29 | 0.30 | 0.33 | 0.29 | 0.31 | 0.31 | 0.29 | 0.30 | 0.30 | - |
SD | 0.08 | 0.07 | 0.08 | 0.07 | 0.09 | 0.11 | 0.10 | 0.11 | 0.09 | 0.10 | 0.11 | 0.11 | 0.10 | 0.08 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | - | |
NO | NDVI | 0.29 | 0.25 | 0.30 | 0.29 | 0.34 | 0.30 | 0.27 | 0.26 | 0.26 | 0.27 | 0.31 | 0.33 | 0.35 | 0.32 | 0.31 | 0.28 | 0.33 | 0.32 | 0.30 | - |
SD | 0.11 | 0.10 | 0.14 | 0.12 | 0.15 | 0.14 | 0.14 | 0.13 | 0.11 | 0.12 | 0.12 | 0.15 | 0.12 | 0.11 | 0.12 | 0.10 | 0.13 | 0.12 | 0.11 | - | |
2012 | |||||||||||||||||||||
DOY | 38 | 86 | 102 | 150 | 182 | 214 | 294 | 310 | 326 | - | - | - | - | - | - | - | - | - | - | - | |
HO | NDVI | 0.27 | 0.33 | 0.23 | 0.19 | 0.33 | 0.26 | 0.31 | 0.29 | 0.29 | - | - | - | - | - | - | - | - | - | - | - |
SD | 0.07 | 0.10 | 0.08 | 0.11 | 0.10 | 0.10 | 0.11 | 0.10 | 0.08 | - | - | - | - | - | - | - | - | - | - | - | |
NO | NDVI | 0.28 | 0.34 | 0.26 | 0.23 | 0.33 | 0.28 | 0.29 | 0.29 | 0.30 | - | - | - | - | - | - | - | - | - | - | - |
SD | 0.10 | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | 0.10 | 0.09 | 0.01 | - | - | - | - | - | - | - | - | - | - | - | |
2013 | |||||||||||||||||||||
DOY | 24 | 72 | 144 | 176 | 256 | 272 | 280 | 288 | 296 | 312 | 352 | - | - | - | - | - | - | - | - | - | |
HO | NDVI | 0.27 | 0.23 | 0.33 | 0.31 | 0.49 | 0.50 | 0.36 | 0.48 | 0.39 | 0.32 | 0.41 | - | - | - | - | - | - | - | - | - |
SD | 0.07 | 0.08 | 0.14 | 0.14 | 0.15 | 0.14 | 0.13 | 0.14 | 0.14 | 0.13 | 0.12 | - | - | - | - | - | - | - | - | - | |
NO | NDVI | 0.26 | 0.25 | 0.31 | 0.32 | 0.44 | 0.46 | 0.35 | 0.43 | 0.36 | 0.32 | 0.37 | - | - | - | - | - | - | - | - | - |
SD | 0.10 | 0.10 | 0.16 | 0.15 | 0.16 | 0.15 | 0.14 | 0.15 | 0.13 | 0.13 | 0.12 | - | - | - | - | - | - | - | - | - | |
2014 | |||||||||||||||||||||
DOY | 19 | 59 | 99 | 115 | 123 | 211 | 227 | 243 | 251 | 275 | 299 | 307 | 323 | 331 | - | - | - | - | - | - | |
HO | NDVI | 0.33 | 0.27 | 0.39 | 0.40 | 0.22 | 0.42 | 0.42 | 0.36 | 0.40 | 0.49 | 0.33 | 0.43 | 0.42 | 0.31 | - | - | - | - | - | - |
SD | 0.10 | 0.10 | 0.14 | 0.13 | 0.11 | 0.15 | 0.15 | 0.14 | 0.13 | 0.14 | 0.10 | 0.12 | 0.13 | 0.11 | - | - | - | - | - | - | |
NO | NDVI | 0.29 | 0.22 | 0.35 | 0.36 | 0.26 | 0.40 | 0.40 | 0.33 | 0.40 | 0.42 | 0.36 | 0.40 | 0.40 | 0.34 | - | - | - | - | - | - |
SD | 0.11 | 0.09 | 0.16 | 0.14 | 0.14 | 0.16 | 0.17 | 0.16 | 0.12 | 0.16 | 0.11 | 0.15 | 0.14 | 0.12 | - | - | - | - | - | - |
References
- McNutt, M.; Camilli, R.; Guthrie, G.; Hsieh, P.; Labson, V.; Lehr, B.; Maclay, D.; Ratzel, A.; Sogge, M. Assessment of Flow Rate Estimates for the Deepwater Horizon/Macondo Well Oil Spill; U.S. Department of the Interior: Washington, DC, USA, 2011.
- Liu, Y.G.; MacFadyen, A.; Ji, Z.G.; Weisberg, R.H. Introduction to monitoring and modeling the deepwater horizon oil spill. In Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise; American Geophysical Union: Washington, DC, USA, 2011; Volume 195, pp. 1–7. [Google Scholar]
- Weisberg, R.H.; Lianyuan, Z.; Liu, Y. On the movement of Deepwater Horizon oil to northern Gulf beaches. Ocean Model. 2017, 111, 81–97. [Google Scholar] [CrossRef]
- Nixon, Z.; Zengel, S.; Baker, M.; Steinhoff, M.; Fricano, G.; Rouhani, S.; Michel, J. Shoreline oiling from the Deepwater Horizon oil spill. Mar. Pollut. Bull. 2016, 107, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Kokaly, R.F.; Couvillion, B.R.; Holloway, J.M.; Roberts, D.A.; Ustin, S.L.; Peterson, S.H.; Khanna, S.; Piazza, S.C. Spectroscopic remote sensing of the distribution and persistence of oil from the Deepwater Horizon spill in Barataria Bay marshes. Remote Sens. Environ. 2013, 129, 210–230. [Google Scholar] [CrossRef]
- Peterson, S.H.; Roberts, D.A.; Beland, M.; Kokaly, R.F.; Ustin, S.L. Oil detection in the coastal marshes of Louisiana using MESMA applied to band subsets of AVIRIS data. Remote Sens. Environ. 2015, 159, 222–231. [Google Scholar] [CrossRef]
- Khanna, S.; Santos, M.J.; Ustin, S.L.; Koltunov, A.; Kokaly, R.F.; Roberts, D.A. Detection of salt marsh vegetation stress and recovery after the Deepwater Horizon oil spill in Barataria Bay, Gulf of Mexico using AVIRIS data. PLoS ONE 2013, 8, e78989. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, E.; Rangoonwala, A.; Suzuoki, Y.; Jones, C.E. Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR). Remote Sens. 2011, 3, 2630–2662. [Google Scholar] [CrossRef]
- Silliman, B.R.; van de Koppel, J.; McCoy, M.W.; Diller, J.; Kasozi, G.N.; Earl, K.; Adams, P.N.; Zimmerman, A.R. Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. USA 2012, 109, 11234–11239. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.X.; Mendelssohn, I.A. Impacts and recovery of the Deepwater Horizon oil spill on vegetation structure and function of coastal salt marshes in the northern Gulf of Mexico. Environ. Sci. Technol. 2012, 46, 3737–3743. [Google Scholar] [CrossRef] [PubMed]
- Pietroski, J.P.; White, J.R.; DeLaune, R.D. Effects of dispersant used for oil spill remediation on nitrogen cycling in Louisiana coastal salt marsh soil. Chemosphere 2015, 119, 562–567. [Google Scholar] [CrossRef] [PubMed]
- McClenachan, G.; Turner, R.E.; Tweel, A.W. Effects of oil on the rate and trajectory of Louisiana marsh shoreline erosion. Environ. Res. Lett. 2013, 8, 044030. [Google Scholar] [CrossRef]
- Byrd, K.B.; O’Connell, J.L.; Di Tommaso, S.; Kelly, M. Evaluation of sensor types and environmental controls on mapping biomass of coastal marsh emergent vegetation. Remote Sens. Environ. 2014, 149, 166–180. [Google Scholar] [CrossRef]
- Beget, M.E.; Di Bella, C.M. Flooding: The effect of water depth on the spectral response of grass canopies. J. Hydrol. 2007, 335, 285–294. [Google Scholar] [CrossRef]
- Kearney, M.S.; Stutzer, D.; Turpie, K.; Stevenson, J.C. The effects of tidal inundation on the reflectance characteristics of coastal marsh vegetation. J. Coast. Res. 2009, 25, 1177–1186. [Google Scholar] [CrossRef]
- Turpie, K.R. Explaining the spectral red-edge features of inundated marsh vegetation. J. Coast. Res. 2013, 29, 1111–1117. [Google Scholar] [CrossRef]
- Jones, C.E.; Minchew, B.; Holt, B.; Hensley, S. Studies of the Deepwater Horizon oil spill with the UAVSAR radar. In Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise; American Geophysical Union: Washington, DC, USA, 2011; Volume 195, pp. 33–50. [Google Scholar]
- Mishra, D.R.; Cho, H.J.; Ghosh, S.; Fox, A.; Downs, C.; Merani, P.B.T.; Kirui, P.; Jackson, N.; Mishra, S. Post-spill state of the marsh: Remote estimation of the ecological impact of the Gulf of Mexico oil spill on Louisiana salt marshes. Remote Sens. Environ. 2012, 118, 176–185. [Google Scholar] [CrossRef]
- Environmental Response Management Application, Deepwater Horizon Gulf of Mexico, Response, Damage Assessment & Restoration. Available online: http://gomex.erma.noaa.gov/ (accessed on 15 March 2017).
- Earth Explorer. Available online: http://earthexplorer.usgs.gov/ (accessed on 15 March 2017).
- Andrefouet, S.; Bindschadler, R.; Brown de Colstoun, E.C.; Choate, M.; Chomentowski, W.; Christopherson, J.; Doorn, B.; Hall, D.K.; Holifield, C.; Howard, S.; et al. Preliminary Assessment of the Value of Landsat-7 ETM+ Data Following Scan Line Corrector Malfunction; U.S. Geological Survey, EROS Data Center: Sioux Falls, SD, USA, 2003.
- Airborne Visible/Infrared Imaging Spectrometer. Available online: http://aviris.jpl.nasa.gov/ (accessed on 15 March 2017).
- Zhang, M.; Ustin, S.L.; Rejmankova, E.; Sanderson, E.W. Monitoring pacific coast salt marshes using remote sensing. Ecol. Appl. 1997, 7, 1039–1053. [Google Scholar] [CrossRef]
- Gross, M.F.; Hardisky, M.A.; Wolf, P.L.; Klemas, V. Relationships among Typha biomass, pore water methane, and reflectance in a delaware (U.S.A.) brackish marsh. J. Coast. Res. 1993, 9, 339–355. [Google Scholar]
- Gross, M.F.; Hardisky, M.A.; Klemas, V.; Wolf, P.L. Quantification of biomass of the marsh grass Spartina alterniflora Loisel using Landsat Thematic Mapper imagery. Photogramm. Eng. Remote Sens. 1987, 53, 1577–1583. [Google Scholar]
- Historical Hurricane Tracks. Available online: https://coast.noaa.gov/hurricanes/ (accessed on 15 March 2017).
- Historical Palmer Drought Indices. Available online: http://www.ncdc.noaa.gov/temp-and-precip/drought/historical-palmers/ (accessed on 15 March 2017).
- Alber, M.; Swenson, E.M.; Adamowicz, S.C.; Mendelssohn, I.A. Salt marsh dieback: An overview of recent events in the US. Estuar. Coast. Shelf Sci. 2008, 80, 1–11. [Google Scholar] [CrossRef]
- Mo, Y.; Momen, B.; Kearney, M.S. Drought-associated phenological changes of coastal marshes in Louisiana. Ecosphere 2017, 8, e01811. [Google Scholar] [CrossRef]
- Kearney, M.S.; Riter, J.C.A.; Turner, R.E. Freshwater river diversions for marsh restoration in Louisiana: twenty-six years of changing vegetative cover and marsh area. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Tides and Currents. Available online: http://tidesandcurrents.noaa.gov/waterlevels.html (accessed on 15 March 2017).
- Mo, Y.; Momen, B.; Kearney, M.S. Quantifying moderate resolution remote sensing phenology of Louisiana coastal marshes. Ecol. Model. 2015, 312, 191–199. [Google Scholar] [CrossRef]
- CBSNEWS. 27,000 Abandoned Gulf Oil Wells May Be Leaking. Available online: http://www.cbsnews.com/news/27000-abandoned-gulf-oil-wells-may-be-leaking/ (accessed on 15 March 2017).
- Ramsey, E.; Rangoonwala, A.; Jones, C.E. Marsh canopy structure changes and the Deepwater Horizon oil spill. Remote Sens. Environ. 2016, 186, 350–357. [Google Scholar] [CrossRef]
- Ramsey, E.; Rangoonwala, A.; Jones, C.E. Structural classification of marshes with polarimetric SAR highlighting the temporal mapping of marshes exposed to oil. Remote Sens. 2015, 7, 11295–11321. [Google Scholar] [CrossRef]
- Rangoonwala, A.; Jones, C.E.; Ramsey, E. Wetland shoreline recession in the Mississippi River delta from petroleum oiling and cyclonic storms. Geophys. Res. Lett. 2016, 43, 11652–11660. [Google Scholar] [CrossRef]
- Turner, R.E.; McClenachan, G.; Tweel, A.W. Islands in the oil: Quantifying salt marsh shoreline erosion after the Deepwater Horizon oiling. Mar. Pollut. Bull. 2016, 110, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Pendergraft, M.A.; Rosenheim, B.E. Varying relative degradation rates of oil in different forms and environments revealed by ramped pyrolysis. Environ. Sci. Technol. 2014, 48, 10966–10974. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.E.; Overton, E.B.; Meyer, B.M.; Miles, M.S.; Hooper-Bui, L. Changes in the concentration and relative abundance of alkanes and pahs from the Deepwater Horizon oiling of coastal marshes. Mar. Pollut. Bull. 2014, 86, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.C.; Mendelssohn, I.A.; Wilsey, B.J. Causes for vegetation dieback in a Louisiana salt marsh: A bioassay approach. Aquat. Bot. 1995, 51, 281–289. [Google Scholar] [CrossRef]
Effect | Pr > F | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | ||
Oiling | 0.36 | 0.77 | 0.48 | 0.06 | 0.48 | <0.01 * | <0.01 * | 0.72 | 0.39 | 0.41 | |
Annual Growth | DOY | 0.14 | 0.03 * | <0.01 * | 0.04 * | <0.01 * | <0.01 * | 0.11 | 0.28 | 0.87 | 0.12 |
DOY × DOY | 0.08 | 0.14 | 0.05 * | 0.06 | 0.01 * | <0.01 * | 0.28 | 0.26 | 0.73 | 0.24 | |
Water level | 0.95 | 0.99 | 0.71 | 0.21 | 0.11 | 0.21 | 0.18 | 0.45 | 0.10 | 0.66 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, Y.; Kearney, M.S.; Riter, J.C.A. Post-Deepwater Horizon Oil Spill Monitoring of Louisiana Salt Marshes Using Landsat Imagery. Remote Sens. 2017, 9, 547. https://doi.org/10.3390/rs9060547
Mo Y, Kearney MS, Riter JCA. Post-Deepwater Horizon Oil Spill Monitoring of Louisiana Salt Marshes Using Landsat Imagery. Remote Sensing. 2017; 9(6):547. https://doi.org/10.3390/rs9060547
Chicago/Turabian StyleMo, Yu, Michael S. Kearney, and J. C. Alexis Riter. 2017. "Post-Deepwater Horizon Oil Spill Monitoring of Louisiana Salt Marshes Using Landsat Imagery" Remote Sensing 9, no. 6: 547. https://doi.org/10.3390/rs9060547
APA StyleMo, Y., Kearney, M. S., & Riter, J. C. A. (2017). Post-Deepwater Horizon Oil Spill Monitoring of Louisiana Salt Marshes Using Landsat Imagery. Remote Sensing, 9(6), 547. https://doi.org/10.3390/rs9060547