Multi-Modal Evolutionary Deep Learning Model for Ovarian Cancer Diagnosis
Abstract
:1. Introduction
- Unlike the state-of-the-art deep learning models which employ single modality data for OC diagnosis and also still lack to the experience of automatic topology construction, a new multi-modal deep learning model is proposed to predict the OC stage. In which, a customized feature extraction network was established to fit each modality’s data and fully extract the deep-seated features, respectively. Each feature network is hybridized with the ALO optimizer to automatically set its topology, which shows stability in processing the longitudinal genomic data and provides optimum image feature maps that realize better performance. The output from the two improved feature networks is finally fused based upon weighted linear aggregation in order to predict the OC stage.
- In total, nine multi-modal fusion models were constructed (with) and without the other different optimization algorithms, and then compared to the proposed model for testing its efficiency in predicting OC stage.
- The established multi-modal deep learning model is applicable to predict other cancers subtypes by integrating features from the gene modal with the pathology image modal.
2. Preliminaries
2.1. Convolutional Neural Network Models
2.2. Long-Short-Term-Memory Models
2.3. Ant Lion Optimizer
3. Materials and Methods
3.1. Dataset
3.2. System Architecture
3.3. A Proposed ALO-LSTM Prediction Model Based upon Gene Modality
3.3.1. Data Pre-Processing
3.3.2. A Structure Design of Improved LSTM
3.4. A Proposed ALO-CNN Prediction Model Based upon Pathology Image Modality
3.4.1. Image Pre-Processing
3.4.2. The Structure Design of Improved CNN
3.5. Multimodal Fusion
4. Results and Discussion
4.1. Validation Criteria
4.2. Experimental Setup
4.3. Parameters Setting
4.4. First Experiment: Testing Proposed Model Using the OC Multi-Modal Dataset
4.5. Second Experiment: Testing Proposed Model Using Benchmarks for Other Cancers
4.6. Comparative Analysis
4.7. Comparisons to Others
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vázquez, M.A.; Mariño, I.P.; Blyuss, O.; Ryan, A.; Gentry-Maharaj, A.; Kalsi, J.; Manchanda, R.; Jacobs, I.; Menon, U.; Zaikin, A. A quantitative performance study of two automatic methods for the diagnosis of ovarian cancer. Biomed. Signal Process. Control 2018, 46, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. Lancet 2014, 384, 1376–1388. [Google Scholar] [CrossRef]
- Kommoss, S.; Pfisterer, J.; Reuss, A.; Diebold, J.; Hauptmann, S.; Schmidt, C.; Bois, A.D.; Schmidt, D.; Kommoss, F. Specialized Pathology Review in Patients with Ovarian Cancer. Int. J. Gynecol. Cancer 2013, 23, 1376–1382. [Google Scholar] [CrossRef]
- Bentaieb, A.; Li-Chang, H.; Huntsman, D.; Hamarneh, G. Automatic Diagnosis of Ovarian Carcinomas via Sparse Multiresolution Tissue Representation. In Lecture Notes in Computer Science Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Springer: Berlin, Germany, 2015; pp. 629–636. [Google Scholar]
- Bentaieb, A.; Li-Chang, H.; Huntsman, D.; Hamarneh, G. A structured latent model for ovarian carcinoma subtyping from histopathology slides. Med. Image Anal. 2017, 39, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.-H.; Hu, V.; Wang, F.; Matulonis, U.A.; Mutter, G.L.; Golden, J.A.; Kohane, I.S. Deciphering serous ovarian carcinoma histopathology and platinum response by convolutional neural networks. BMC Med. 2020, 18. [Google Scholar] [CrossRef] [PubMed]
- Papp, E.; Hallberg, D.; Konecny, G.E.; Bruhm, D.C.; Adleff, V.; Noë, M.; Kagiampakis, I.; Palsgrove, D.; Conklin, D.; Kinose, Y.; et al. Integrated Genomic, Epigenomic, and Expression Analyses of Ovarian Cancer Cell Lines. Cell Rep. 2018, 25, 2617–2633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615.
- Sun, D.; Li, A.; Tang, B.; Wang, M. Integrating genomic data and pathological images to effectively predict breast cancer clinical outcome. Comput. Methods Programs Biomed. 2018, 161, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Wang, T.; Sun, L.; Dong, T.; Han, Z.; Huang, Z.; Zhang, J.; Zhang, D.; Huang, K. Multi-task multi-modal learning for joint diagnosis and prognosis of human cancers. Med. Image Anal. 2020, 65, 101795. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Li, A.; He, J.; Wang, M. LSCDFS-MKL: A multiple kernel based method for lung squamous cell carcinomas disease-free survival prediction with pathological and genomic data. J. Biomed. Inform. 2019, 94, 103194. [Google Scholar] [CrossRef]
- Liu, T.; Huang, J.; Liao, T.; Pu, R.; Liu, S.; Peng, Y. A Hybrid Deep Learning Model for Predicting Molecular Subtypes of Human Breast Cancer Using Multimodal Data. Irbm 2021. [Google Scholar] [CrossRef]
- Kott, O.; Linsley, D.; Amin, A.; Karagounis, A.; Jeffers, C.; Golijanin, D.; Serre, T.; Gershman, B. Development of a Deep Learning Algorithm for the Histopathologic Diagnosis and Gleason Grading of Prostate Cancer Biopsies: A Pilot Study. Eur. Urol. Focus 2019, 7, 347–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismael, S.A.A.; Mohammed, A.; Hefny, H. An enhanced deep learning approach for brain cancer MRI images classification using residual networks. Artif. Intell. Med. 2020, 102, 101779. [Google Scholar] [CrossRef] [PubMed]
- Harangi, B.; Baran, A.; Hajdu, A. Assisted deep learning framework for multi-class skin lesion classification considering a binary classification support. Biomed. Signal. Process. Control 2020, 62, 102041. [Google Scholar] [CrossRef]
- Celik, Y.; Talo, M.; Yildirim, O.; Karabatak, M.; Acharya, U.R. Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images. Pattern Recognit. Lett. 2020, 133, 232–239. [Google Scholar] [CrossRef]
- Guo, D.; Duan, G.; Yu, Y.; Li, Y.; Wu, F.-X.; Li, M. A disease inference method based on symptom extraction and bidirectional Long Short Term Memory networks. Methods 2020, 173, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Si, Y.; Rodriguez, L.; Shooshan, S.E.; Demner-Fushman, D.; Roberts, K. Understanding spatial language in radiology: Representation framework, annotation, and spatial relation extraction from chest X-ray reports using deep learning. J. Biomed. Inform. 2020, 108, 103473. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Huo, Y.; Bao, S.; Tang, Y.; Antic, S.L.; Epstein, E.S.; Balar, A.B.; Deppen, S.; Paulson, A.B.; Sandler, K.L.; et al. Distanced LSTM: Time-Distanced Gates in Long Short-Term Memory Models for Lung Cancer Detection. In Machine Learning in Medical Imaging Lecture Notes in Computer Science; Springer: Berlin, Germany, 2019; pp. 310–318. [Google Scholar]
- Lu, Z.; Pu, H.; Wang, F.; Hu, Z.; Wang, L. The expressive power of neural networks: A view from the width. Proc. Adv. Neural Inf. Process. Syst. 2017, 6231–6239. Available online: https://arxiv.org/abs/1709.02540 (accessed on 2 March 2021).
- Rolnick, D.; Tegmark, M. The power of deeper networks for expressing natural functions. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Du, S.; Lee, J. On the power of over-parametrization in neural networks with quadratic activation. In Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 1329–1338. [Google Scholar]
- Qi, J.; Du, J.; Siniscalchi, S.M.; Ma, X.; Lee, C.-H. Analyzing Upper Bounds on Mean Absolute Errors for Deep Neural Network-Based Vector-to-Vector Regression. IEEE Trans. Signal. Process. 2020, 68, 3411–3422. [Google Scholar]
- Liu, P.; Basha, M.D.E.; Li, Y.; Xiao, Y.; Sanelli, P.C.; Fang, R. Deep Evolutionary Networks with Expedited Genetic Algorithms for Medical Image Denoising. Med. Image Anal. 2019, 54, 306–315. [Google Scholar] [CrossRef]
- Gao, Z.; Li, Y.; Yang, Y.; Wang, X.; Dong, N.; Chiang, H.-D. A GPSO-optimized convolutional neural networks for EEG-based emotion recognition. Neurocomputing 2020, 380, 225–235. [Google Scholar] [CrossRef]
- Samuel, O.D.; Okwu, M.O.; Oyejide, O.J.; Taghinezhad, E.; Afzal, A.; Kaveh, M. Optimizing biodiesel production from abundant waste oils through empirical method and grey wolf optimizer. Fuel 2020, 281, 118701. [Google Scholar] [CrossRef]
- Dalwinder, S.; Birmohan, S.; Manpreet, K. Simultaneous feature weighting and parameter determination of Neural Networks using Ant Lion Optimization for the classification of breast cancer. Biocybern. Biomed. Eng. 2020, 40, 337–351. [Google Scholar] [CrossRef]
- Gupta, D.; Sundaram, S.; Khanna, A.; Hassanien, A.E.; Albuquerque, V.H.C.D. Improved diagnosis of Parkinsons disease using optimized crow search algorithm. Comput. Electr. Eng. 2018, 68, 412–424. [Google Scholar] [CrossRef]
- Ghoniem, R.M. A Novel Bio-Inspired Deep Learning Approach for Liver Cancer Diagnosis. Information 2020, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Özyön, S. Optimal short-term operation of pumped-storage power plants with differential evolution algorithm. Energy 2020, 194, 116866. [Google Scholar] [CrossRef]
- Ghoniem, R.M.; Alhelwa, N.; Shaalan, K. A Novel Hybrid Genetic-Whale Optimization Model for Ontology Learning from Arabic Text. Algorithms 2019, 12, 182. [Google Scholar] [CrossRef] [Green Version]
- Penghui, L.; Ewees, A.A.; Beyaztas, B.H.; Qi, C.; Salih, S.Q.; Al-Ansari, N.; Bhagat, S.K.; Yaseen, Z.M.; Singh, V.P. Metaheuristic Optimization Algorithms Hybridized with Artificial Intelligence Model for Soil Temperature Prediction: Novel Model. IEEE Access 2020, 8, 51884–51904. [Google Scholar] [CrossRef]
- Ghoniem, R.M.; Shaalan, K. FCSR—Fuzzy Continuous Speech Recognition Approach for Identifying Laryngeal Pathologies Using New Weighted Spectrum Features. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017 Advances in Intelligent Systems and Computing, Cairo, Egypt, 9–11 September 2017; Springer: Berlin, Germany, 2017; pp. 384–395. [Google Scholar]
- Dong, J.; Wu, L.; Liu, X.; Li, Z.; Gao, Y.; Zhang, Y.; Yang, Q. Estimation of daily dew point temperature by using bat algorithm optimization based extreme learning machine. Appl. Therm. Eng. 2020, 165, 114569. [Google Scholar] [CrossRef]
- Velliangiri, S.; Karthikeyan, P.; Xavier, V.A.; Baswaraj, D. Hybrid electro search with genetic algorithm for task scheduling in cloud computing. Ain Shams Eng. J. 2020, 12, 631–639. [Google Scholar] [CrossRef]
- Banerjee, I.; Ling, Y.; Chen, M.C.; Hasan, S.A.; Langlotz, C.P.; Moradzadeh, N.; Chapman, B.; Amrhein, T.; Mong, D.; Rubin, D.L.; et al. Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification. Artif. Intell. Med. 2019, 97, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.; Elazim, S.A.; Abdelaziz, A. Ant Lion Optimization Algorithm for Renewable Distributed Generations. Energy 2016, 116, 445–458. [Google Scholar] [CrossRef]
- Peng, L.; Liu, S.; Liu, R.; Wang, L. Effective long short-term memory with differential evolution algorithm for electricity price prediction. Energy 2018, 162, 1301–1314. [Google Scholar] [CrossRef]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary ant lion approaches for feature selection. Neurocomputing 2016, 213, 54–65. [Google Scholar] [CrossRef]
- Ghoniem, R.M.; Algarni, A.D.; Shaalan, K. Multi-Modal Emotion Aware System Based on Fusion of Speech and Brain Information. Information 2019, 10, 239. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Du, J.; Siniscalchi, S.M.; Ma, X.; Lee, C.-H. On Mean Absolute Error for Deep Neural Network Based Vector-to-Vector Regression. IEEE Signal. Process. Lett. 2020, 27, 1485–1489. [Google Scholar] [CrossRef]
- Cen, Z.; Wang, J. Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer. Energy 2019, 169, 160–171. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80. [Google Scholar] [CrossRef]
- Zarie, M.; Jahedsaravani, A.; Massinaei, M. Flotation froth image classification using convolutional neural networks. Miner. Eng. 2020, 155, 106443. [Google Scholar]
Clinical Characteristics | Number of Samples |
---|---|
Patients with Serous Ovarian Carcinoma having Clinical Data | N = 587 |
Stage I | 17 (2.90%) |
Stage II | 30 (5.11%) |
Stage III | 446 (75.98%) |
Stage IV | 89 (15.16 %) |
Stage Not Available | 5 (0.85 %) |
Data Category | Number of Attributes |
Gene expressions | 6426 |
Copy number variants | 24,776 |
Pathology images for each sample | 1–10 images |
Total pathology images for all samples. | 1375 images |
LSTM Parameters | Range/Value | Best Selected Values (Elite’s Ones) |
---|---|---|
Input length | 90 | |
Units number of hidden layer | 37 | |
Number of epochs | 14 | |
Batch size | 64 | |
L2-regularization factor | 0.005 | |
Initial learning rate | 0.3 | |
Learn rate drop factor | 0.8 | |
Learn rate drop period | 42 | |
Gradient threshold | 4 |
CNN | Range/Value | Best Selected Values (Elite’s Ones) |
---|---|---|
Kernels | . | |
Stride | . | |
Padding | . | |
Number of filters | . | |
Activation function | ||
Pooling |
Stage I | Stage II | Stage II | Stage IV | Stage Not Available | |
---|---|---|---|---|---|
Training set | 11 | 18 | 268 | 53 | 3 |
Validation set | 3 | 6 | 89 | 18 | 1 |
Test set | 3 | 6 | 89 | 18 | 1 |
Parameter | Setting |
---|---|
Maximum iterations | 200 |
Search agents number (i.e., number of ants and antlions, wolves, colony size, whales, bats, etc.) | 20 |
L (Controlling exploitation and exploration) for ALO | 5 |
Crossover for GA and DE | 0.5 |
Mutation for GA and DE | 0.15 |
Acceleration (c1) for PSO | 1.4 |
Acceleration (c2) for PSO | 1.6 |
PSO maximal inertia weight | 0.7 |
PSO minimal inertia weight | 0.1 |
BAT constants | |
Random variable r for WO | [−1,1] |
Logarithmic spiral shape for WO | 1 |
Limit for ABC | 5 |
Lower bound for GWO | −50 |
Upper bound for GWO | 50 |
Flight length for CS | 0.2 |
Run | Multi-Modal Fusion Model | Gene Modality | Image Modality | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# | MAE | MSE | MAPE | SMAPE | SD | MAE | MSE | MAPE | SMAPE | SD | MAE | MSE | MAPE | SMAPE | SD |
1 | 0.0215 | 0.1914 | 2.81 | 4.356 | 0.072 | 0.5324 | 0.6764 | 6.836 | 8.45 | 0.391 | 0.6642 | 0.7381 | 7.562 | 9.356 | 0.776 |
2 | 0.016 | 0.1613 | 1.362 | 2.284 | 0.013 | 0.5152 | 0.6683 | 6.726 | 8.047 | 0.507 | 0.6317 | 0.6147 | 7.275 | 9.099 | 0.347 |
3 | 0.0163 | 0.2344 | 1.764 | 2.731 | 0.019 | 0.4886 | 0.5925 | 6.399 | 7.33 | 0.283 | 0.6344 | 0.8547 | 7.333 | 9.12 | 0.861 |
4 | 0.02 | 0.2953 | 2.457 | 3.933 | 0.083 | 0.5005 | 0.6732 | 6.533 | 7.543 | 0.254 | 0.6623 | 0.7605 | 7.49 | 9.299 | 0.627 |
5 | 0.0204 | 0.2848 | 2.484 | 4.013 | 0.029 | 0.4999 | 0.5624 | 6.512 | 7.527 | 0.419 | 0.6711 | 0.8192 | 7.809 | 9.429 | 0.552 |
6 | 0.0207 | 0.167 | 2.607 | 4.215 | 0.027 | 0.463 | 0.682 | 6.135 | 7.088 | 0.729 | 0.5588 | 0.8317 | 6.88 | 8.686 | 0.702 |
7 | 0.0186 | 0.1208 | 2.253 | 3.609 | 0.096 | 0.5098 | 0.4996 | 6.623 | 7.999 | 0.229 | 0.5894 | 0.8857 | 6.988 | 8.813 | 0.551 |
8 | 0.03 | 0.1524 | 3.181 | 4.407 | 0.028 | 0.5248 | 0.4157 | 6.774 | 8.188 | 0.28 | 0.728 | 0.6574 | 8.455 | 10.435 | 0.528 |
9 | 0.0175 | 0.3023 | 2.001 | 3.029 | 0.024 | 0.4887 | 0.5997 | 6.419 | 7.432 | 0.641 | 0.6767 | 0.8889 | 7.956 | 9.472 | 0.792 |
10 | 0.0151 | 0.1472 | 1.181 | 1.872 | 0.095 | 0.5041 | 0.6166 | 6.552 | 7.609 | 0.167 | 0.6671 | 0.9022 | 7.728 | 9.396 | 0.336 |
11 | 0.0172 | 0.1507 | 1.809 | 2.93 | 0.012 | 0.5151 | 0.6046 | 6.678 | 8.014 | 0.18 | 0.5854 | 0.759 | 6.898 | 8.788 | 0.397 |
12 | 0.0206 | 0.26 | 2.595 | 4.081 | 0.032 | 0.4661 | 0.4468 | 6.29 | 7.09 | 0.766 | 0.699 | 0.6251 | 7.988 | 9.992 | 0.525 |
13 | 0.0155 | 0.2201 | 1.342 | 2.106 | 0.013 | 0.502 | 0.5957 | 6.549 | 7.572 | 0.162 | 0.6236 | 0.8744 | 7.15 | 8.961 | 0.422 |
14 | 0.0193 | 0.2388 | 2.301 | 3.82 | 0.036 | 0.5091 | 0.6209 | 6.619 | 7.918 | 0.317 | 0.8606 | 0.6345 | 8.778 | 10.473 | 0.759 |
15 | 0.0196 | 0.2194 | 2.355 | 3.847 | 0.044 | 0.4603 | 0.6429 | 6.077 | 7.066 | 0.388 | 0.6294 | 0.6565 | 7.19 | 8.989 | 0.356 |
16 | 0.0153 | 0.2225 | 1.279 | 1.972 | 0.035 | 0.4798 | 0.6991 | 6.342 | 7.111 | 0.414 | 0.6306 | 0.8132 | 7.198 | 9.088 | 0.622 |
17 | 0.0207 | 0.1344 | 2.787 | 4.227 | 0.097 | 0.5005 | 0.6988 | 6.533 | 7.543 | 0.348 | 0.6544 | 0.7251 | 7.489 | 9.29 | 0.833 |
18 | 0.0185 | 0.1975 | 2.106 | 3.501 | 0.035 | 0.5233 | 0.6322 | 6.753 | 8.154 | 0.699 | 0.6211 | 0.7672 | 7.055 | 8.9 | 0.874 |
19 | 0.0162 | 0.1549 | 1.59 | 2.291 | 0.069 | 0.489 | 0.4706 | 6.444 | 7.497 | 0.636 | 0.6476 | 0.8076 | 7.477 | 9.142 | 0.533 |
20 | 0.017 | 0.2942 | 1.771 | 2.888 | 0.017 | 0.5274 | 0.5169 | 6.777 | 8.273 | 0.654 | 0.5944 | 0.6544 | 6.999 | 8.859 | 0.607 |
Avg. | 0.0188 | 0.2075 | 2.1018 | 3.3056 | 0.044 | 0.5 | 0.5958 | 6.5286 | 7.6726 | 0.424 | 0.6515 | 0.7636 | 7.4849 | 9.2794 | 0.6 |
Run | Multi-Modal Fusion Model | Gene Modality | Image Modality | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
# | PRE (%) | REC (%) | ACC (%) | F1-Score | PRE (%) | REC (%) | ACC (%) | F1-Score | PRE (%) | REC (%) | ACC (%) | F1-Score |
1 | 97.9 | 97.77 | 98 | 99.4 | 93 | 92.98 | 93.2 | 93.51 | 91.9 | 91.31 | 92 | 92.14 |
2 | 99 | 98.97 | 99.11 | 99.66 | 93.47 | 93.52 | 93.58 | 93.7 | 92 | 91.9 | 92.28 | 92.42 |
3 | 99 | 98.99 | 99.05 | 99.6 | 95 | 94.9 | 95.3 | 95.52 | 92 | 92.12 | 92.27 | 92.48 |
4 | 98.85 | 98.9 | 98.91 | 99.4 | 93.9 | 93.99 | 94.13 | 94.44 | 91.92 | 91.8 | 92 | 92.5 |
5 | 98.75 | 98.69 | 98.79 | 98.94 | 94.37 | 94.25 | 94.47 | 94.64 | 91.42 | 91.3 | 91.5 | 91.86 |
6 | 98.5 | 98.44 | 98.56 | 99.48 | 95.4 | 95.35 | 95.55 | 95.62 | 93.61 | 93.7 | 93.75 | 94 |
7 | 98.85 | 98.89 | 98.98 | 99.4 | 93.61 | 93.13 | 93.75 | 93.9 | 93 | 92.93 | 93.19 | 93.28 |
8 | 97.64 | 97.59 | 97.89 | 99.4 | 93.5 | 93.48 | 93.56 | 93.81 | 89.9 | 89.71 | 90 | 90.39 |
9 | 98.93 | 98.88 | 99 | 99 | 95 | 95.16 | 95.25 | 95.4 | 91 | 90.94 | 91.18 | 91.6 |
10 | 99.2 | 99.11 | 99.39 | 99.4 | 93.98 | 93.7 | 94 | 94.39 | 91.38 | 91.42 | 91.6 | 91.72 |
11 | 98.97 | 98.9 | 99 | 99.4 | 93.27 | 93.41 | 93.66 | 93.7 | 93 | 92.91 | 93.13 | 93.29 |
12 | 98.61 | 98.58 | 98.65 | 99.6 | 95.49 | 95.17 | 95.51 | 95.8 | 90.92 | 90.8 | 91 | 91.47 |
13 | 99.3 | 99 | 99.25 | 99.59 | 93.91 | 93.86 | 94 | 94.27 | 93 | 92.89 | 93.07 | 93.29 |
14 | 98.81 | 98.7 | 98.96 | 99.59 | 93 | 92.96 | 93.08 | 93.4 | 93 | 93.11 | 93.58 | 93.7 |
15 | 98.89 | 98.78 | 98.95 | 99 | 95.59 | 95.76 | 95.89 | 95.9 | 92.14 | 92 | 92.5 | 92.81 |
16 | 99 | 98.97 | 99.29 | 99.7 | 95.18 | 95.2 | 95.49 | 95.62 | 92.25 | 92.3 | 92.42 | 92.88 |
17 | 98.1 | 98 | 98.35 | 99 | 94.22 | 94 | 94.37 | 94.46 | 91.92 | 91.85 | 92 | 92.18 |
18 | 98.9 | 98.76 | 98.99 | 99.7 | 93.39 | 93.4 | 93.57 | 93.7 | 93.36 | 93.2 | 93.56 | 93.71 |
19 | 99 | 98.9 | 99.09 | 99.66 | 94.65 | 94.52 | 94.79 | 94.84 | 93 | 92.88 | 93.08 | 93.29 |
20 | 99 | 99.89 | 99.03 | 99.7 | 93 | 92.96 | 93.22 | 93.49 | 93 | 92.9 | 93.1 | 93.41 |
Avg. | 98.76 | 98.74 | 98.87 | 99.43 | 94.15 | 94.09 | 94.32 | 94.51 | 92.19 | 92.1 | 92.37 | 92.63 |
Dataset | MAE | MSE | MAPE | SMAPE | SD | PRE (%) | REC (%) | ACC (%) | F1-Score (%) |
---|---|---|---|---|---|---|---|---|---|
BRCA | 0.0155 | 0.1254 | 2.115 | 3.347 | 0.047 | 98.35 | 98.42 | 98.8 | 98.92 |
LUSC | 0.0139 | 0.1066 | 2.1 | 3.299 | 0.029 | 98.78 | 98.71 | 99.28 | 99.31 |
BRCA (Image modal) | 0.5784 | 0.8661 | 7.122 | 9.503 | 0.337 | 92.88 | 93 | 93.19 | 93.4 |
BRCA (Gene modal) | 0.5004 | 0.5798 | 6.567 | 7.976 | 0.243 | 93.94 | 94.22 | 94.49 | 94.52 |
LUSC (Image modal) | 0.5661 | 0.7898 | 6.923 | 8.917 | 0.299 | 92.96 | 93.11 | 93.31 | 93.49 |
LUSC (Gene modal) | 0.4886 | 0.5511 | 5.991 | 7.443 | 0.205 | 94.17 | 94.7 | 94.76 | 94.9 |
Dataset | Gene Modality | Image Modality |
---|---|---|
TCGA-OV | 0.024 | 0.039 |
BRCA | 0.033 | 0.044 |
LUSC | 0.022 | 0.049 |
Dataset | Measure | ALO (ours) | No Opt. | GA | PSO | DE | BAT | ABC | WO | GWO | CS |
---|---|---|---|---|---|---|---|---|---|---|---|
TCGA-OV | MAE | 0.0188 | 0.9854 | 0.4693 | 0.4324 | 0.4161 | 0.3479 | 0.2453 | 0.1974 | 0.158 | 0.0779 |
MSE | 0.2075 | 1.1523 | 0.6237 | 0.6001 | 0.6 | 0.5721 | 0.4609 | 0.3055 | 0.2433 | 0.2309 | |
MAPE | 2.1018 | 9.746 | 5.819 | 5.404 | 4.765 | 4.101 | 3.746 | 3.112 | 2.908 | 2.632 | |
SMAPE | 3.3056 | 11.485 | 6.05 | 5.899 | 4.966 | 4.119 | 3.882 | 3.682 | 3.499 | 3.329 | |
SD | 0.044 | 0.831 | 0.654 | 0.537 | 0.519 | 0.501 | 0.374 | 0.331 | 0.298 | 0.249 | |
PRE (%) | 98.76 | 93.11 | 95 | 95.44 | 95.98 | 96.31 | 96.77 | 96.9 | 97.34 | 97.77 | |
REC (%) | 98.74 | 93.39 | 95.25 | 95.63 | 96.21 | 96.54 | 96.97 | 97.11 | 97.69 | 97.8 | |
ACC (%) | 98.87 | 93.7 | 95.38 | 95.91 | 96.39 | 96.66 | 96.84 | 97.14 | 97.42 | 97.91 | |
F1-score (%) | 99.43 | 93.89 | 95.48 | 95.99 | 96.42 | 96.81 | 96.92 | 97.25 | 97.58 | 97.96 | |
W-test | 0.0444 | 0.0433 | 0.0411 | 0.0407 | 0.0394 | 0.0321 | 0.0066 | 0.0022 | |||
BRCA | MAE | 0.0155 | 0.9949 | 0.4801 | 0.3001 | 0.241 | 0.1982 | 0.1112 | 0.0881 | 0.0762 | 0.0552 |
MSE | 0.1254 | 1.2372 | 0.7723 | 0.6934 | 0.6401 | 0.6012 | 0.5222 | 0.4179 | 0.3499 | 0.3195 | |
MAPE | 2.115 | 9.823 | 5.909 | 4.055 | 3.85 | 3.24 | 2.97 | 2.75 | 2.44 | 2.211 | |
SMAPE | 3.347 | 11.66 | 6.221 | 5.112 | 4.772 | 3.988 | 3.715 | 3.526 | 3.349 | 3.33 | |
SD | 0.047 | 0.903 | 0.725 | 0.641 | 0.6 | 0.559 | 0.416 | 0.338 | 0.31 | 0.306 | |
PRE (%) | 98.35 | 92.66 | 95.32 | 95.95 | 96.23 | 96.63 | 96.97 | 97.84 | 97.67 | 98.13 | |
REC (%) | 98.42 | 93.51 | 95.29 | 96 | 96.11 | 96.8 | 97 | 97.89 | 97.91 | 98.35 | |
ACC (%) | 98.8 | 93 | 95.18 | 96.37 | 96.68 | 96.75 | 97.04 | 97.35 | 97.7 | 97.95 | |
F1-score (%) | 98.92 | 92.87 | 94.39 | 96.43 | 96.75 | 96.89 | 97.1 | 97.5 | 97.81 | 97.98 | |
W-test | 0.043 | 0.0424 | 0.0415 | 0.0402 | 0.0338 | 0.0323 | 0.0218 | 0.0216 | |||
LUSC | MAE | 0.0139 | 0.8341 | 0.3942 | 0.2998 | 0.2112 | 0.1361 | 0.0997 | 0.0551 | 0.0485 | 0.0391 |
MSE | 0.1066 | 0.9907 | 0.6893 | 0.5875 | 0.4933 | 0.4221 | 0.3779 | 0.3055 | 0.3 | 0.2989 | |
MAPE | 2.1 | 8.542 | 4.286 | 3.993 | 3.49 | 3.09 | 2.913 | 2.591 | 2.442 | 2.29 | |
SMAPE | 3.299 | 10.33 | 5.27 | 4.879 | 4.611 | 4.432 | 3.992 | 3.771 | 3.566 | 3.439 | |
SD | 0.029 | 0.799 | 0.645 | 0.613 | 0.59 | 0.513 | 0.375 | 0.327 | 0.302 | 0.295 | |
PRE (%) | 98.78 | 93.45 | 95.61 | 96.14 | 96.39 | 96.88 | 97.19 | 97.92 | 98.11 | 98.25 | |
REC (%) | 98.71 | 94. 62 | 96.4 | 96.2 | 96.21 | 96.9 | 97.29 | 97.83 | 97.95 | 98.3 | |
ACC (%) | 99.28 | 93.91 | 96 | 96.41 | 96.67 | 96.78 | 97.17 | 97.59 | 97.83 | 97.97 | |
F1-score (%) | 99.31 | 93.52 | 96.05 | 96.54 | 96.77 | 96.92 | 97.13 | 97.69 | 97.92 | 98 | |
W-test | 0.0425 | 0.0419 | 0.0402 | 0.0345 | 0.0336 | 0.0251 | 0.0221 | 0.0019 |
Measure | TCGA-OV | BRCA | LUSC | ||||||
---|---|---|---|---|---|---|---|---|---|
ResNet34 | AlexNet | Proposed | ResNet34 | AlexNet | Proposed | ResNet34 | AlexNet | Proposed | |
MAE | 0.5975 | 0.6009 | 0.0188 | 0.5375 | 0.6682 | 0.0155 | 0.5006 | 0.6552 | 0.0139 |
MSE | 0.7752 | 0.8211 | 0.2075 | 0.7245 | 0.8014 | 0.1254 | 0.5114 | 0.7716 | 0.1066 |
MAPE | 5.705 | 6.101 | 2.1018 | 5.001 | 5.884 | 2.115 | 4.883 | 5.737 | 2.1 |
SMAPE | 4.119 | 5.711 | 3.3056 | 6.112 | 6.501 | 3.347 | 4.937 | 5.992 | 3.299 |
SD | 0.681 | 0.724 | 0.044 | 0.596 | 0.649 | 0.047 | 0.515 | 0.607 | 0.029 |
PRE (%) | 96.6 | 96 | 98.76 | 96.98 | 96.3 | 98.35 | 96.78 | 96.25 | 98.78 |
REC (%) | 96.9 | 96.4 | 98.74 | 96.27 | 96.11 | 98.42 | 96.93 | 96 | 98.71 |
ACC (%) | 96.55 | 95.95 | 98.87 | 96.81 | 95.63 | 98.8 | 96.97 | 95.88 | 99.28 |
F1-score (%) | 97.7 | 96.19 | 99.43 | 97.1 | 95.8 | 98.92 | 97.14 | 96.1 | 99.31 |
W-test | 0.037 | 0.04 | 0.041 | 0.045 | 0.0341 | 0.0417 | |||
CPU Time | 205.02 s | 276.88 s | 120.6 s | 236.98 s | 296.52 | 173.4 s | 121.2 s | 185.04 s | 80.8 s |
Ref. | Dataset | Performance Measure | ||||
---|---|---|---|---|---|---|
AUC | ACC (%) | PRE (%) | REC (%) | F1-Score (%) | ||
[6] | TCGA-OV | 0.95 | - | - | - | - |
[9] | BRCA | 0.828 | 80.22 | 63.4 | 28.5 | - |
[10] | BRCA | - | 72.53 | 78.76 | 88.18 | 83.17 |
LUSC | - | 70.08 | 73.57 | 81.25 | 77.49 | |
[11] | LUSC | 0.8793 | 80.22 | 81.25 | 57.14 | - |
[12] | BRCA | 0.9427 | 88.07 | - | - | - |
Proposed | TCGA-OV | - | 98.87 | 98.5 | 98.89 | 99.43 |
BRCA | - | 98.8 | 98.35 | 99 | 99.4 | |
LUSC | - | 99.28 | 98.78 | 99.25 | 99.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghoniem, R.M.; Algarni, A.D.; Refky, B.; Ewees, A.A. Multi-Modal Evolutionary Deep Learning Model for Ovarian Cancer Diagnosis. Symmetry 2021, 13, 643. https://doi.org/10.3390/sym13040643
Ghoniem RM, Algarni AD, Refky B, Ewees AA. Multi-Modal Evolutionary Deep Learning Model for Ovarian Cancer Diagnosis. Symmetry. 2021; 13(4):643. https://doi.org/10.3390/sym13040643
Chicago/Turabian StyleGhoniem, Rania M., Abeer D. Algarni, Basel Refky, and Ahmed A. Ewees. 2021. "Multi-Modal Evolutionary Deep Learning Model for Ovarian Cancer Diagnosis" Symmetry 13, no. 4: 643. https://doi.org/10.3390/sym13040643
APA StyleGhoniem, R. M., Algarni, A. D., Refky, B., & Ewees, A. A. (2021). Multi-Modal Evolutionary Deep Learning Model for Ovarian Cancer Diagnosis. Symmetry, 13(4), 643. https://doi.org/10.3390/sym13040643