A Review of Uncertainty-Based Multidisciplinary Design Optimization Methods Based on Intelligent Strategies
Abstract
:1. Introduction
2. State-of-the-Art Strategies for MDO
2.1. Statement of MDO Problems
2.2. Classification of MDO Architectures
2.3. Symmetry in Multidisciplinary Analysis
3. Uncertainty-Based Multidisciplinary Design Optimization (UMDO)
- (1)
- Modeling complexity. Uncertainties exhibit multifarious sources and diverse distribution characteristics, making it challenging to perform uncertainty modeling using appropriate mathematical tools and distribution models.
- (2)
- Computational complexity. Under existing MDO frameworks, accurate analyses in various disciplines require time-consuming simulation tools, resulting in a rapid increase in computational burden in the coordination optimization of multiple disciplines as the size of the optimization problem grows. On this basis, UMDO not only needs to consider the propagation effects of uncertainties in multidisciplinary coupling, but also conduct complex, nested uncertainty analyses during optimization iterations to guarantee design safety. Therefore, the solution of UMDO is more complicated and difficult than MDO.
- (3)
- Organizational complexity. The organization of UMDO encompasses multiple fundamental computational units, including single-discipline analysis and optimization, multidisciplinary coupling analysis and coordination optimization, as well as uncertainty analysis. A crucial challenge in UMDO organization involves reasonably organizing these units to create executable computer programs and to efficiently decouple and coordinate discipline analysis and optimization.
3.1. Uncertainty Modeling
3.2. Uncertainty Sensitivity Analysis
3.3. Multidisciplinary Uncertainty Propagation
3.4. Optimization under Uncertainty
4. Artificial Intelligent Strategies for UMDO
4.1. Unsupervised Learning Method for Data Processing
4.2. Supervised Learning Methods for Discipline Solver
4.3. Intelligent Optimization Algorithms
5. Conclusions
- (1)
- This paper provides an overview of various existing deterministic MDO architectures, which are classified based on the interdisciplinary coupling techniques used and number of optimization levels (single or multiple). In general, multi-level architectures provide higher autonomy for each discipline, but they also have relatively complex organizational structures, making them suitable for optimization design of large-scale systems. Although single-level architectures are easy to implement, they are somehow prone to non-convergence.
- (2)
- Symmetry is a common characteristic in structural optimization design, which helps guide the acquisition of optimal solutions. Under the UMDO framework, symmetry and conservation laws can be applied to transform the partial differential equations of disciplinary analyses into symmetrical forms, thereby enhancing analytical efficiency. Currently, this strategy has been validated in simple disciplinary analyses, but further exploration is needed for complex multidisciplinary optimization designs.
- (3)
- Probability theory remains the most popular method for handling uncertainty, and a significant portion of reliability optimization designs are examined under a probabilistic framework. As a supplement in scenarios with scarce samples, non-probabilistic techniques have shown superiority in dealing with cognitive uncertainty. Due to the broad range of uncertain factors in multidisciplinary coupled systems, hybrid modeling of multiple uncertainty models holds superior potential for quantification. However, reliability optimization design within this framework is still in its preliminary stage.
- (4)
- For UMDO architectures with nested loops, restructuring their organization can accelerate the optimization process. Both single-level procedures and the decomposition and coordination-based approach can achieve efficiency improvements. However, the implementation process of the former is more concise, although the effectiveness of optimization cannot be guaranteed. Additionally, when using metaheuristic algorithms to solve UMDO problems, single-level procedures can avoid the repetition of reliability analysis of particles in the algorithm.
- (5)
- Although metamodels constructed based on various supervised learning algorithms are widely utilized in multidisciplinary analyses, weighted blending of different metamodels, instead of solely focusing on the performance improvement of a single model, is considered an easy-to-implement and superior analysis approach. Moreover, data preprocessing (dimensionality reduction and clustering), as well as intelligent optimization algorithms, can also enhance the computational efficiency of UMDO. Future developments should place more emphasis on rapid solving techniques of UMDO that apply these three strategies simultaneously.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDO | multidisciplinary design optimization |
MDA | multidisciplinary analysis |
IDF | individual discipline feasible |
SAND | simultaneous analysis and design |
CO | collaborative optimization |
ATC | analytical target cascading |
SA | sensitivity analysis |
MCS | Monte Carlo simulation |
SORM | second-order reliability method |
SLDV | single-level double-vector method |
RDO | robust design optimization |
AI | artificial intelligence |
GMM | Gaussian mixture model |
LLE | local linear embedding |
ANN | artificial neural network |
KNN | K-nearest neighbors |
RF | random forest |
PSO | particle swarm optimization |
AFS | artificial fish swarm |
FA | firefly algorithm |
UMDO | uncertainty-based MDO |
MDF | multidisciplinary feasible |
AAO | All-at-once |
CSSO | concurrent subspace optimization |
BLISS | bi-level integrated system synthesis |
QSD | quasi-separable decomposition |
UP | uncertainty propagation |
FORM | first-order reliability method |
RBDO | reliability-based optimization design |
SLSV | single-loop single-vector method |
SORA | sequential optimization and reliability assessment |
ML | machine learning |
PCA | principal component analysis |
ISOMAP | isometric feature mapping |
SVM | support vector machine |
DT | decision tree |
GA | genetic algorithm |
ABC | artificial bee colony |
ACO | ant colony optimization |
CS | cuckoo search |
References
- Brevault, L.; Balesdent, M.; Morio, J. Aerospace System Analysis and Optimization in Uncertainty; Springer Optimization and Its Applications; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Balesdent, M.; Bérend, N.; Dépincé, P.; Chriette, A. A Survey of Multidisciplinary Design Optimization Methods in Launch Vehicle Design. Struct. Multidiscip. Optim. 2012, 45, 619–642. [Google Scholar] [CrossRef]
- Kelaiaia, R.; Chemori, A.; Brahmia, A.; Kerboua, A.; Zaatri, A.; Company, O. Optimal Dimensional Design of Parallel Manipulators with an Illustrative Case Study: A Review. Mech. Mach. Theory 2023, 188, 105390. [Google Scholar] [CrossRef]
- Martins, J.R.R.A.; Lambe, A.B. Multidisciplinary Design Optimization: A Survey of Architectures. AIAA J. 2013, 51, 2049–2075. [Google Scholar] [CrossRef]
- Wang, C.; Matthies, H.G. Epistemic Uncertainty-Based Reliability Analysis for Engineering System with Hybrid Evidence and Fuzzy Variables. Comput. Methods Appl. Mech. Eng. 2019, 355, 438–455. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; You, L.; Zhou, S. Reliability Analysis of Structures Based on a Probability-Uncertainty Hybrid Model. Qual. Reliab. Eng. Int. 2019, 35, 263–279. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, Z.; He, Y. Fuzzy Stochastic Finite Element Method for the Hybrid Uncertain Temperature Field Prediction. Int. J. Heat Mass Transf. 2015, 91, 512–519. [Google Scholar] [CrossRef]
- Wang, C.; Matthies, H.G. Non-Probabilistic Interval Process Model and Method for Uncertainty Analysis of Transient Heat Transfer Problem. Int. J. Therm. Sci. 2019, 144, 147–157. [Google Scholar] [CrossRef]
- Wang, C.; Matthies, H.G. Random Model with Fuzzy Distribution Parameters for Hybrid Uncertainty Propagation in Engineering Systems. Comput. Methods Appl. Mech. Eng. 2020, 359, 112673. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, Z.; Xu, F.; Zhang, Y. Review of Robust Aerodynamic Design Optimization for Air Vehicles. Arch. Comput. Methods Eng. 2019, 26, 685–732. [Google Scholar] [CrossRef]
- Li, F.; Luo, Z.; Sun, G.; Zhang, N. An Uncertain Multidisciplinary Design Optimization Method Using Interval Convex Models. Eng. Optim. 2013, 45, 697–718. [Google Scholar] [CrossRef]
- Meng, D.; Xie, T.; Wu, P.; He, C.; Hu, Z.; Lv, Z. An Uncertainty-Based Design Optimization Strategy with Random and Interval Variables for Multidisciplinary Engineering Systems. Structures 2021, 32, 997–1004. [Google Scholar] [CrossRef]
- Wang, C.; Qiang, X.; Fan, H.; Wu, T.; Chen, Y. Novel Data-Driven Method for Non-Probabilistic Uncertainty Analysis of Engineering Structures Based on Ellipsoid Model. Comput. Methods Appl. Mech. Eng. 2022, 394, 114889. [Google Scholar] [CrossRef]
- Li, J.; Du, X.; Martins, J.R.R.A. Machine Learning in Aerodynamic Shape Optimization. Prog. Aerosp. Sci. 2022, 134, 100849. [Google Scholar] [CrossRef]
- Sferza, M.; Ninic, J.; Chronopoulos, D.; Glock, F.; Daoud, F. Multidisciplinary Optimisation of Aircraft Structures with Critical Non-Regular Areas: Current Practice and Challenges. Aerospace 2021, 8, 223. [Google Scholar] [CrossRef]
- Paul, J.; Bhukya, R. Forty-Five Years of International Journal of Consumer Studies: A Bibliometric Review and Directions for Future Research. Int. J. Consum. Stud. 2021, 45, 937–963. [Google Scholar] [CrossRef]
- Sepulveda, E.; Smith, H.; Sziroczak, D. Multidisciplinary Analysis of Subsonic Stealth Unmanned Combat Aerial Vehicles. CEAS Aeronaut. J. 2019, 10, 431–442. [Google Scholar] [CrossRef]
- Morovat, F.; Mozaffari, A.; Roshanian, J.; Zare, H. A Novel Aspect of Composite Sandwich Fairing Structure Optimization of a Two-Stage Launch Vehicle (Safir) Using Multidisciplinary Design Optimization Independent Subspace Approach. Aerosp. Sci. Technol. 2019, 84, 865–879. [Google Scholar] [CrossRef]
- Zadeh, P.M.; Shirazi, M.S. Multidisciplinary Design Optimization Architecture to Concurrent Design of Satellite Systems. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2017, 231, 1898–1916. [Google Scholar] [CrossRef]
- Agte, J.; De Weck, O.; Sobieszczanski-Sobieski, J.; Arendsen, P.; Morris, A.; Spieck, M. MDO: Assessment and Direction for Advancement—An Opinion of One International Group. Struct. Multidiscip. Optim. 2010, 40, 17–33. [Google Scholar] [CrossRef]
- Balesdent, M.; Brevault, L.; Valderrama-Zapata, J.L.; Urbano, A. All-At-Once Formulation Integrating Pseudo-Spectral Optimal Control for Launch Vehicle Design and Uncertainty Quantification. Acta Astronaut. 2022, 200, 462–477. [Google Scholar] [CrossRef]
- Rumpfkeil, M.P.; Beran, P.S. Multifidelity Sparse Polynomial Chaos Surrogate Models Applied to Flutter Databases. AIAA J. 2020, 58, 1292–1303. [Google Scholar] [CrossRef]
- Fujikawa, T.; Tsuchiya, T.; Tomioka, S. Multi-Objective, Multidisciplinary Design Optimization of TSTO Space Planes with RBCC Engines. In Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar]
- Song, X.; Zhang, T.; Yuan, Y.; Wang, X.; Sun, W. Multidisciplinary Co-Design Optimization of the Structure and Control Systems for Large Cable Shovel Considering Cross-Disciplinary Interaction. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 4353–4365. [Google Scholar] [CrossRef]
- Zhang, M.; Gou, W.; Li, L.; Wang, X.; Yue, Z. Multidisciplinary Design and Optimization of the Twin-Web Turbine Disk. Struct. Multidiscip. Optim. 2016, 53, 1129–1141. [Google Scholar] [CrossRef]
- Allison, J.T.; Kokkolaras, M.; Papalambros, P.Y. On Selecting Single-Level Formulations for Complex System Design Optimization. J. Mech. Des. 2007, 129, 898–906. [Google Scholar] [CrossRef]
- Hoogervorst, J.E.K.; Elham, A. Wing Aerostructural Optimization Using the Individual Discipline Feasible Architecture. Aerosp. Sci. Technol. 2017, 65, 90–99. [Google Scholar] [CrossRef]
- Adami, A.; Mortazavi, M.; Nosratollahi, M.; Hosseini, M. Multidisciplinary Design Optimization of a Manned Reentry Mission Considering Trajectory and Aerodynamic Configuration. In Proceedings of the 5th International Conference on Recent Advances in Space Technologies—RAST2011, Istanbul, Turkey, 9–11 June 2011; pp. 598–603. [Google Scholar]
- Kabganian, M.; Hashemi, S.M.; Roshanian, J. Multidisciplinary Design Optimization of a Re-Entry Spacecraft via Radau Pseudospectral Method. Appl. Mech. 2022, 3, 1176–1189. [Google Scholar] [CrossRef]
- Bidoki, M.; Mortazavi, M.; Sabzehparvar, M. A New Approach in System and Tactic Design Optimization of an Autonomous Underwater Vehicle by Using Multidisciplinary Design Optimization. Ocean Eng. 2018, 147, 517–530. [Google Scholar] [CrossRef]
- Yang, F.; Yue, Z.; Li, L.; Guan, D. Hybrid Reliability-Based Multidisciplinary Design Optimization with Random and Interval Variables. J. Risk Reliab. 2018, 232, 52–64. [Google Scholar] [CrossRef]
- Zhu, D.; Tang, S.; Guo, J.; Gao, F. Optimum Design for Solid Rocket Motors Based on Individual Discipline Feasible Strategy. Binggong XuebaoActa Armamentarii 2012, 33, 897–901. [Google Scholar]
- Dener, A.; Hicken, J.E.; Kenway, G.K.W.; Martins, J.R.R.A. Enabling Modular Aerostructural Optimization: Individual Discipline Feasible without the Jacobians. In Proceedings of the 9th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta, Georgia, 25–29 June 2018. [Google Scholar]
- Moerland, E.; Ciampa, P.D.; Zur, S.; Baalbergen, E.; Noskov, N.; D’Ippolito, R.; Lombardi, R. Collaborative Architecture Supporting the next Generation of MDAO within the AGILE Paradigm. Prog. Aerosp. Sci. 2020, 119, 100637. [Google Scholar] [CrossRef]
- Cai, G.; Fang, J.; Zheng, Y.; Tong, X.; Chen, J.; Wang, J. Optimization of System Parameters for Liquid Rocket Engines with Gas-Generator Cycles. J. Propuls. Power 2010, 26, 113–119. [Google Scholar] [CrossRef]
- Xu, C.; Yao, W. Mean Value-Based Collaborative Method for Structural Optimization of Aircraft Family. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2022, 236, 3468–3481. [Google Scholar]
- Jin, X.; Duan, F.; Chen, P.; Yang, Y. A Robust Global Optimization Approach to Solving CO Problems—Enhanced Design Space Decrease Collaborative Optimization. Struct. Multidiscip. Optim. 2017, 55, 2305–2322. [Google Scholar] [CrossRef]
- Chagraoui, H.; Soula, M. Multidisciplinary Collaborative Optimization Based on Relaxation Method for Solving Complex Problems. Concurr. Eng. 2020, 28, 280–289. [Google Scholar] [CrossRef]
- Zadeh, P.M.; Mehmani, A.; Messac, A. High Fidelity Multidisciplinary Design Optimization of a Wing Using the Interaction of Low and High Fidelity Models. Optim. Eng. 2016, 17, 503–532. [Google Scholar] [CrossRef]
- Meng, D.; Li, Y.; He, C.; Guo, J.; Lv, Z.; Wu, P. Multidisciplinary Design for Structural Integrity Using a Collaborative Optimization Method Based on Adaptive Surrogate Modelling. Mater. Des. 2021, 206, 109789. [Google Scholar] [CrossRef]
- Tao, S.; Shintani, K.; Chen, W.; Yang, G.; Meingast, H.; Apley, D.W. Enhanced Collaborative Optimization Using Alternating Direction Method of Multipliers. Struct. Multidiscip. Optim. 2018, 58, 1571–1588. [Google Scholar] [CrossRef]
- Gardenghi, M.; Wiecek, M.M. Efficiency for Multiobjective Multidisciplinary Optimization Problems with Quasiseparable Subproblems. Optim. Eng. 2012, 13, 293–318. [Google Scholar] [CrossRef]
- Kang, N.; Kokkolaras, M.; Papalambros, P.Y. Solving Multiobjective Optimization Problems Using Quasi-Separable MDO Formulations and Analytical Target Cascading. Struct. Multidiscip. Optim. 2014, 50, 849–859. [Google Scholar] [CrossRef]
- Bloebaum, C.L.; Hajela, P.; Sobieszczanski-Sobieski, J. Non-Hierarchic System Decomposition in Structural Optimization. Eng. Optim. 1992, 19, 171–186. [Google Scholar] [CrossRef]
- Yao, W.; Wu, Y.; Chen, F. A Concurrent Subspace Collaborative Optimization Architecture to Structural Synthetical Optimization Design. Struct. Multidiscip. Optim. 2016, 53, 1197–1207. [Google Scholar] [CrossRef]
- Zhang, K.; Han, Z.; Li, W.; Song, W. Bilevel Adaptive Weighted Sum Method for Multidisciplinary Multi-Objective Optimization. AIAA J. 2008, 46, 2611–2622. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Zhou, L.; Liu, Z. Multidisciplinary Design Optimization on Conceptual Design of Aero-Engine. Int. J. Turbo Jet-Engines 2016, 33, 195–208. [Google Scholar] [CrossRef]
- Meibody, M.N.P.; Naseh, H.; Ommi, F. Developing a Multi-Objective Multi-Disciplinary Robust Design Optimization Framework. Sci. Iran. 2021, 28, 2150–2163. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, P.; Shao, X.; Yi, Y. An Improved Bi-Level Integrated System Collaborative Optimization Method for Multidisciplinary Design Optimization. In Proceedings of the 2014 International Conference on Modelling, Identification & Control, Melbourne, VIC, Australia, 3–5 December 2014; pp. 365–370. [Google Scholar]
- Wang, P.; Xu, W.; Zhu, H.; Tian, H.; Cai, G. An Application of Analytical Target Cascading for a Hierarchical Multidisciplinary System: The Preliminary Design of a Launch Vehicle Powered by Hybrid Rocket Motors. Aerospace 2022, 9, 778. [Google Scholar] [CrossRef]
- Bäckryd, R.D.; Ryberg, A.B.; Nilsson, L. Multidisciplinary Design Optimisation Methods for Automotive Structures. Int. J. Automot. Mech. Eng. 2017, 14, 4050–4067. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, W.; Huang, Y.; Wang, Z. An Improved MDO Procedure: Hybrid Bi-Level Integrated System Synthesis. Guofang Keji Daxue XuebaoJournal Natl. Univ. Def. Technol. 2011, 33, 17–21. [Google Scholar]
- De Wit, A.J.; Lammen, W.F.; Vankan, W.J.; Timmermans, H.; Van Der Laan, T.; Ciampa, P.D. Aircraft Rudder Optimization—A Multi-Level and Knowledge-Enabled Approach. Prog. Aerosp. Sci. 2020, 119, 100650. [Google Scholar] [CrossRef]
- Chittick, I.R.; Martins, J.R.R.A. Aero-Structural Optimization Using Adjoint Coupled Post-Optimality Sensitivities. Struct. Multidiscip. Optim. 2008, 36, 59–70. [Google Scholar] [CrossRef]
- Chittick, I.R.; Martins, J.R.R.A. An Asymmetric Suboptimization Approach to Aerostructural Optimization. Optim. Eng. 2009, 10, 133–152. [Google Scholar] [CrossRef]
- Wang, S.; Yang, M.; Niu, W.; Wang, Y.; Yang, S.; Zhang, L.; Deng, J. Multidisciplinary Design Optimization of Underwater Glider for Improving Endurance. Struct. Multidiscip. Optim. 2021, 63, 2835–2851. [Google Scholar] [CrossRef]
- Hang, X.; Su, W.; Fei, Q.; Jiang, D. Analytical Sensitivity Analysis of Flexible Aircraft with the Unsteady Vortex-Lattice Aerodynamic Theory. Aerosp. Sci. Technol. 2020, 99, 105612. [Google Scholar] [CrossRef]
- Choi, J.S.; Park, G.J. Multidisciplinary Design Optimization of the Flapping Wing System for Forward Flight. Int. J. Micro Air Veh. 2017, 9, 93–110. [Google Scholar] [CrossRef]
- DeMiguel, V.; Murray, W. A Local Convergence Analysis of Bilevel Decomposition Algorithms. Optim. Eng. 2006, 7, 99–133. [Google Scholar] [CrossRef]
- Jiang, P.; Zhou, Q.; Shao, X.; Long, R.; Zhou, H. A Modified BLISCO Method and Its Combination with Variable Fidelity Metamodel for Engineering Design. Eng. Comput. Swans. Wales 2016, 33, 1353–1377. [Google Scholar] [CrossRef]
- Rozvany, G.I.N. On Symmetry and Non-Uniqueness in Exact Topology Optimization. Struct. Multidiscip. Optim. 2011, 43, 297–317. [Google Scholar] [CrossRef]
- Guo, X.; Ni, C.; Cheng, G.; Du, Z. Some Symmetry Results for Optimal Solutions in Structural Optimization. Struct. Multidiscip. Optim. 2012, 46, 631–645. [Google Scholar] [CrossRef]
- Fu, J.; Chen, B.; Chen, L. Noether Symmetries of Discrete Nonholonomic Dynamical Systems. Phys. Lett. A 2009, 373, 409–412. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, X. Perturbation to Lie Symmetry and Adiabatic Invariants for Birkhoffian Systems on Time Scales. Commun. Nonlinear Sci. Numer. Simul. 2019, 75, 251–261. [Google Scholar] [CrossRef]
- Chen, X.; Luo, S.; Mei, F. A Form Invariance of Constrained Birkhoffian System. Appl. Math. Mech. 2002, 23, 53–57. [Google Scholar]
- Luo, S.; Dai, Y.; Zhang, X.; He, J. A New Method of Fractional Dynamics, i.e., Fractional Mei Symmetrical Method for Finding Conserved Quantity, and Its Applications to Physics. Int. J. Theor. Phys. 2016, 55, 4298–4309. [Google Scholar] [CrossRef]
- Zhai, X.; Zhang, Y. Lie Symmetry Analysis on Time Scales and Its Application on Mechanical Systems. J. Vib. Control 2019, 25, 581–592. [Google Scholar] [CrossRef]
- Wang, C. Evidence-Theory-Based Uncertain Parameter Identification Method for Mechanical Systems with Imprecise Information. Comput. Methods Appl. Mech. Eng. 2019, 351, 281–296. [Google Scholar] [CrossRef]
- Wang, C.; Matthies, H.G. Hybrid Evidence-and-Fuzzy Uncertainty Propagation under a Dual-Level Analysis Framework. Fuzzy Sets Syst. 2019, 367, 51–67. [Google Scholar] [CrossRef]
- Wang, C.; Fan, H.; Wu, T. Novel Rough Set Theory-Based Method for Epistemic Uncertainty Modeling, Analysis and Applications. Appl. Math. Model. 2023, 113, 456–474. [Google Scholar] [CrossRef]
- Wang, C.; Qiang, X.; Xu, M.; Wu, T. Recent Advances in Surrogate Modeling Methods for Uncertainty Quantification and Propagation. Symmetry 2022, 14, 1219. [Google Scholar] [CrossRef]
- Yao, W.; Chen, X.; Luo, W.; Van Tooren, M.; Guo, J. Review of Uncertainty-Based Multidisciplinary Design Optimization Methods for Aerospace Vehicles. Prog. Aerosp. Sci. 2011, 47, 450–479. [Google Scholar] [CrossRef]
- Wang, C.; Matthies, H.G.; Xu, M.; Li, Y. Evidence-Theory-Based Model Validation Method for Heat Transfer System with Epistemic Uncertainty. Int. J. Therm. Sci. 2018, 132, 618–627. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Tang, H. Uncertainty Measurement for Fuzzy Set-Valued Data. IEEE Access 2020, 8, 32297–32311. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, Z.; Wang, X.; Wu, D. Interval Finite Element Analysis and Reliability-Based Optimization of Coupled Structural-Acoustic System with Uncertain Parameters. Finite Elem. Anal. Des. 2014, 91, 108–114. [Google Scholar] [CrossRef]
- Cao, L.; Liu, J.; Xie, L.; Jiang, C.; Bi, R. Non-Probabilistic Polygonal Convex Set Model for Structural Uncertainty Quantification. Appl. Math. Model. 2021, 89, 504–518. [Google Scholar] [CrossRef]
- Liu, Q.; Dai, Y.; Wu, X.; Han, X.; Ouyang, H.; Li, Z. A Non-Probabilistic Uncertainty Analysis Method Based on Ellipsoid Possibility Model and Its Applications in Multi-Field Coupling Systems. Comput. Methods Appl. Mech. Eng. 2021, 385, 114051. [Google Scholar] [CrossRef]
- Ji, W.; Pang, Y.; Jia, X.; Wang, Z.; Hou, F.; Song, B.; Liu, M.; Wang, R. Fuzzy Rough Sets and Fuzzy Rough Neural Networks for Feature Selection: A Review. WIREs Data Min. Knowl. Discov. 2021, 11, e1402. [Google Scholar] [CrossRef]
- Faes, M.; Moens, D. Recent Trends in the Modeling and Quantification of Non-Probabilistic Uncertainty. Arch. Comput. Methods Eng. 2020, 27, 633–671. [Google Scholar] [CrossRef]
- Hose, D.; Hanss, M. A Universal Approach to Imprecise Probabilities in Possibility Theory. Int. J. Approx. Reason. 2021, 133, 133–158. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, X.; Wang, Y.; Wang, X. Universal Grey Number Theory for the Uncertainty Presence of Wiper Structural System. Assem. Autom. 2021, 41, 55–70. [Google Scholar] [CrossRef]
- Meng, Z.; Pang, Y.; Pu, Y.; Wang, X. New Hybrid Reliability-Based Topology Optimization Method Combining Fuzzy and Probabilistic Models for Handling Epistemic and Aleatory Uncertainties. Comput. Methods Appl. Mech. Eng. 2020, 363, 112886. [Google Scholar] [CrossRef]
- Wang, C.; Matthies, H.G. A Comparative Study of Two Interval-Random Models for Hybrid Uncertainty Propagation Analysis. Mech. Syst. Signal Process. 2020, 136, 106531. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, Z. Hybrid Uncertain Analysis for Temperature Field Prediction with Random, Fuzzy and Interval Parameters. Int. J. Therm. Sci. 2015, 98, 124–134. [Google Scholar] [CrossRef]
- Brahmia, A.; Kelaiaia, R.; Company, O.; Chemori, A. Kinematic Sensitivity Analysis of Manipulators Using a Novel Dimensionless Index. Robot. Auton. Syst. 2022, 150, 104021. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, J.; Wang, R. Basic Framework and Main Methods of Uncertainty Quantification. Math. Probl. Eng. 2020, 2020, 6068203. [Google Scholar] [CrossRef]
- Thriveni, G.; Ghosh, K. Covalent Functionalization in Graphene Nanoribbon: Theoretical Modeling and Sensitivity Analysis. J. Appl. Phys. 2021, 129, 114301. [Google Scholar] [CrossRef]
- Ionescu-Bujor, M.; Cacuci, D.G. A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems—I: Deterministic Methods. Nucl. Sci. Eng. 2004, 147, 189–203. [Google Scholar] [CrossRef]
- Tian, W.; Heo, Y.; De Wilde, P.; Li, Z.; Yan, D.; Park, C.S.; Feng, X.; Augenbroe, G. A Review of Uncertainty Analysis in Building Energy Assessment. Renew. Sustain. Energy Rev. 2018, 93, 285–301. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, W.; German, B.J. Multidisciplinary Statistical Sensitivity Analysis Considering Both Aleatory and Epistemic Uncertainties. AIAA J. 2016, 54, 1326–1338. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, Z. An Interval Perturbation Method for Exterior Acoustic Field Prediction with Uncertain-but-Bounded Parameters. J. Fluids Struct. 2014, 49, 441–449. [Google Scholar] [CrossRef]
- Yuan, R.; Ma, J.; Su, P.; Dong, Y.; Cheng, J. Monte-Carlo Integration Models for Multiple Scattering Based Optical Wireless Communication. IEEE Trans. Commun. 2020, 68, 334–348. [Google Scholar] [CrossRef]
- Abyani, M.; Bahaari, M.R. A Comparative Reliability Study of Corroded Pipelines Based on Monte Carlo Simulation and Latin Hypercube Sampling Methods. Int. J. Press. Vessel. Pip. 2020, 181, 104079. [Google Scholar] [CrossRef]
- Helton, J.C. Quantification of Margins and Uncertainties: Conceptual and Computational Basis. Reliab. Eng. Syst. Saf. 2011, 96, 976–1013. [Google Scholar] [CrossRef]
- Wang, C.; Matthies, H.G. Dual-Stage Uncertainty Modeling and Evaluation for Transient Temperature Effect on Structural Vibration Property. Comput. Mech. 2019, 63, 323–333. [Google Scholar] [CrossRef]
- Paudel, A.; Gupta, S.; Thapa, M.; Mulani, S.B.; Walters, R.W. Higher-Order Taylor Series Expansion for Uncertainty Quantification with Efficient Local Sensitivity. Aerosp. Sci. Technol. 2022, 126, 107574. [Google Scholar] [CrossRef]
- Wang, C.; Matthies, H.G. A Modified Parallelepiped Model for Non-Probabilistic Uncertainty Quantification and Propagation Analysis. Comput. Methods Appl. Mech. Eng. 2020, 369, 113209. [Google Scholar] [CrossRef]
- Bhosekar, A.; Ierapetritou, M. Advances in Surrogate Based Modeling, Feasibility Analysis, and Optimization: A Review. Comput. Chem. Eng. 2018, 108, 250–267. [Google Scholar] [CrossRef]
- Zuniga, M.M.; Garnier, J.; Remy, E.; De Rocquigny, E. Adaptive Directional Stratification for Controlled Estimation of the Probability of a Rare Event. Reliab. Eng. Syst. Saf. 2011, 96, 1691–1712. [Google Scholar] [CrossRef]
- Sundar, V.S.; Shields, M.D. Reliability Analysis Using Adaptive Kriging Surrogates with Multimodel Inference. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2019, 5, 04019004. [Google Scholar] [CrossRef]
- Luo, Y.; Kang, Z.; Li, A. Structural Reliability Assessment Based on Probability and Convex Set Mixed Model. Comput. Struct. 2009, 87, 1408–1415. [Google Scholar] [CrossRef]
- Balu, A.S.; Rao, B.N. Inverse Structural Reliability Analysis under Mixed Uncertainties Using High Dimensional Model Representation and Fast Fourier Transform. Eng. Struct. 2012, 37, 224–234. [Google Scholar] [CrossRef]
- Hu, Z.; Mansour, R.; Olsson, M.; Du, X. Second-Order Reliability Methods: A Review and Comparative Study. Struct. Multidiscip. Optim. 2021, 64, 3233–3263. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Z.; Li, X.; Chen, G.; Chen, G.; Gao, L.; Qiu, H. An Accuracy Analysis Method for First-Order Reliability Method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 4319–4327. [Google Scholar] [CrossRef]
- Jiang, C.; Bi, R.G.; Lu, G.Y.; Han, X. Structural Reliability Analysis Using Non-Probabilistic Convex Model. Comput. Methods Appl. Mech. Eng. 2013, 254, 83–98. [Google Scholar] [CrossRef]
- Wang, C.; Matthies, H.G. Evidence Theory-Based Reliability Optimization Design Using Polynomial Chaos Expansion. Comput. Methods Appl. Mech. Eng. 2018, 341, 640–657. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, C.; Wang, G.G.; Han, X. First and Second Order Approximate Reliability Analysis Methods Using Evidence Theory. Reliab. Eng. Syst. Saf. 2015, 137, 40–49. [Google Scholar] [CrossRef]
- Yuan, X.; Faes, M.G.R.; Liu, S.; Valdebenito, M.A.; Beer, M. Efficient Imprecise Reliability Analysis Using the Augmented Space Integral. Reliab. Eng. Syst. Saf. 2021, 210, 107477. [Google Scholar] [CrossRef]
- Du, X.; Chen, W. Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design. J. Mech. Des. 2000, 122, 385–394. [Google Scholar] [CrossRef]
- Yao, W.; Chen, X.; Huang, Y.; van Tooren, M. An Enhanced Unified Uncertainty Analysis Approach Based on First Order Reliability Method with Single-Level Optimization. Reliab. Eng. Syst. Saf. 2013, 116, 28–37. [Google Scholar] [CrossRef]
- Acar, E.; Bayrak, G.; Jung, Y.; Lee, I.; Ramu, P.; Ravichandran, S.S. Modeling, Analysis, and Optimization under Uncertainties: A Review. Struct. Multidiscip. Optim. 2021, 64, 2909–2945. [Google Scholar] [CrossRef]
- Meng, Z.; Li, G.; Wang, X.; Sait, S.M.; Yıldız, A.R. A Comparative Study of Metaheuristic Algorithms for Reliability-Based Design Optimization Problems. Arch. Comput. Methods Eng. 2021, 28, 1853–1869. [Google Scholar] [CrossRef]
- Song, J.; Kang, W.; Lee, Y.; Chun, J. Structural System Reliability: Overview of Theories and Applications to Optimization. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2021, 7, 03121001. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, Z. Improved Numerical Prediction and Reliability-Based Optimization of Transient Heat Conduction Problem with Interval Parameters. Struct. Multidiscip. Optim. 2015, 51, 113–123. [Google Scholar] [CrossRef]
- Khodam, A.; Mesbahi, P.; Shayanfar, M.; Ayyub, B.M. Global Decoupling for Structural Reliability-Based Optimal Design Using Improved Differential Evolution and Chaos Control. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2021, 7, 04020052. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, P.; Gao, L.; Shao, X. Sequential Optimisation and Reliability Assessment for Multidisciplinary Design Optimisation under Hybrid Uncertainty of Randomness and Fuzziness. J. Eng. Des. 2013, 24, 363–382. [Google Scholar] [CrossRef]
- Agarwal, H.; Renaud, J.E.; Lee, J.C.; Watson, L.T. A Unilevel Method for Reliability Based Design Optimization. In Proceedings of the Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics & Materials Conference, Beijing, China, 8–11 August 2013. [Google Scholar]
- McAllister, C.D.; Simpson, T.W. Multidisciplinary Robust Design Optimization of an Internal Combustion Engine. J. Mech. Des. 2003, 125, 124–130. [Google Scholar] [CrossRef]
- Padmanabhan, D.; Batill, S.M. Reliability Based Optimization Using Approximations with Applications to Multi-Disciplinary System Design. In Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NY, USA, 14–17 January 2002. [Google Scholar]
- Kokkolaras, M.; Mourelatos, Z.P.; Papalambros, P.Y. Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty. J. Mech. Des. 2005, 128, 503–508. [Google Scholar] [CrossRef]
- Liu, H.; Chen, W.; Kokkolaras, M.; Papalambros, P.Y.; Kim, H.M. Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization under Uncertainty. J. Mech. Des. 2006, 128, 991–1000. [Google Scholar] [CrossRef]
- Xiong, F.; Yin, X.; Chen, W.; Yang, S. Enhanced Probabilistic Analytical Target Cascading with Application to Multi-Scale Design. Eng. Optim. 2010, 42, 581–592. [Google Scholar] [CrossRef]
- Du, X.; Guo, J.; Beeram, H. Sequential Optimization and Reliability Assessment for Multidisciplinary Systems Design. Struct. Multidiscip. Optim. 2008, 35, 117–130. [Google Scholar] [CrossRef]
- Meng, D.; Liu, M.; Yang, S.; Zhang, H.; Ding, R. A Fluid–Structure Analysis Approach and Its Application in the Uncertainty-Based Multidisciplinary Design and Optimization for Blades. Adv. Mech. Eng. 2018, 10, 1687814018783410. [Google Scholar] [CrossRef]
- Wang, P.; Zhu, H.; Tian, H.; Cai, G. Analytic Target Cascading with Fuzzy Uncertainties Based on Global Sensitivity Analysis for Overall Design of Launch Vehicle Powered by Hybrid Rocket Motor. Aerosp. Sci. Technol. 2021, 114, 106680. [Google Scholar] [CrossRef]
- Jafarsalehi, A.; Fazeley, H.R.; Mirshams, M. Conceptual Remote Sensing Satellite Design Optimization under Uncertainty. Aerosp. Sci. Technol. 2016, 55, 377–391. [Google Scholar] [CrossRef]
- Hosseini, M.; Nosratollahi, M.; Sadati, H. Multidisciplinary Design Optimization of UAV under Uncertainty. J. Aerosp. Technol. Manag. 2017, 9, 160–169. [Google Scholar] [CrossRef]
- Park, H.U.; Lee, J.W.; Chung, J.; Behdinan, K. Uncertainty-Based MDO for Aircraft Conceptual Design. Aircr. Eng. Aerosp. Technol. Int. J. 2015, 87, 345–356. [Google Scholar] [CrossRef]
- Acar, E. Effect of Error Metrics on Optimum Weight Factor Selection for Ensemble of Metamodels. Expert Syst. Appl. 2015, 42, 2703–2709. [Google Scholar] [CrossRef]
- Flah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M.L. Machine Learning Algorithms in Civil Structural Health Monitoring: A Systematic Review. Arch. Comput. Methods Eng. 2021, 28, 2621–2643. [Google Scholar] [CrossRef]
- Usama, M.; Qadir, J.; Raza, A.; Arif, H.; Yau, K.A.; Elkhatib, Y.; Hussain, A.; Al-Fuqaha, A. Unsupervised Machine Learning for Networking: Techniques, Applications and Research Challenges. IEEE Access 2019, 7, 65579–65615. [Google Scholar] [CrossRef]
- Min, E.; Guo, X.; Liu, Q.; Zhang, G.; Cui, J.; Long, J. A Survey of Clustering With Deep Learning: From the Perspective of Network Architecture. IEEE Access 2018, 6, 39501–39514. [Google Scholar] [CrossRef]
- Rodriguez, M.Z.; Comin, C.H.; Casanova, D.; Bruno, O.M.; Amancio, D.R.; Costa, L.D.F.; Rodrigues, F.A. Clustering Algorithms: A Comparative Approach. PLoS ONE 2019, 14, e0210236. [Google Scholar] [CrossRef]
- Reddy, G.T.; Reddy, M.P.K.; Lakshmanna, K.; Kaluri, R.; Rajput, D.S.; Srivastava, G.; Baker, T. Analysis of Dimensionality Reduction Techniques on Big Data. IEEE Access 2020, 8, 54776–54788. [Google Scholar] [CrossRef]
- Howley, T.; Madden, M.G.; O’Connell, M.L.; Ryder, A.G. The Effect of Principal Component Analysis on Machine Learning Accuracy with High-Dimensional Spectral Data. Knowl.-Based Syst. 2006, 19, 363–370. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, H.; Luo, Q.; Abdel-Baset, M. Automatic Data Clustering Using Nature-Inspired Symbiotic Organism Search Algorithm. Knowl.-Based Syst. 2019, 163, 546–557. [Google Scholar] [CrossRef]
- Du, S.; Wang, L. Aircraft Design Optimization with Uncertainty Based on Fuzzy Clustering Analysis. J. Aerosp. Eng. 2016, 29, 04015032. [Google Scholar] [CrossRef]
- Harris, S.; De Amorim, R.C. An Extensive Empirical Comparison of K-Means Initialization Algorithms. IEEE Access 2022, 10, 58752–58768. [Google Scholar] [CrossRef]
- Nanda, S.J.; Panda, G. A Survey on Nature Inspired Metaheuristic Algorithms for Partitional Clustering. Swarm Evol. Comput. 2014, 16, 1–18. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Shukla, A.K.; Agbaje, M.B.; Oyelade, O.N.; José-García, A.; Agushaka, J.O. Automatic Clustering Algorithms: A Systematic Review and Bibliometric Analysis of Relevant Literature. Neural Comput. Appl. 2021, 33, 6247–6306. [Google Scholar] [CrossRef]
- Ikotun, A.M.; Almutari, M.S.; Ezugwu, A.E. K-Means-Based Nature-Inspired Metaheuristic Algorithms for Automatic Data Clustering Problems: Recent Advances and Future Directions. Appl. Sci. 2021, 11, 11246. [Google Scholar] [CrossRef]
- José-García, A.; Gómez-Flores, W. Automatic Clustering Using Nature-Inspired Metaheuristics: A Survey. Appl. Soft Comput. 2016, 41, 192–213. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Shukla, A.K.; Nath, R.; Akinyelu, A.A.; Agushaka, J.O.; Chiroma, H.; Muhuri, P.K. Metaheuristics: A Comprehensive Overview and Classification along with Bibliometric Analysis. Artif. Intell. Rev. 2021, 54, 4237–4316. [Google Scholar] [CrossRef]
- Jiao, L.; Denoeux, T.; Liu, Z.; Pan, Q. EGMM: An Evidential Version of the Gaussian Mixture Model for Clustering. Appl. Soft Comput. 2022, 129, 109619. [Google Scholar] [CrossRef]
- Yu, J.; Chaomurilige, C.; Yang, M.S. On Convergence and Parameter Selection of the EM and DA-EM Algorithms for Gaussian Mixtures. Pattern Recognit. 2018, 77, 188–203. [Google Scholar] [CrossRef]
- Liem, R.P.; Mader, C.A.; Martins, J.R.R.A. Surrogate Models and Mixtures of Experts in Aerodynamic Performance Prediction for Aircraft Mission Analysis. Aerosp. Sci. Technol. 2015, 43, 126–151. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, J. Robust Semi-Supervised Spatial Picture Fuzzy Clustering with Local Membership and KL-Divergence for Image Segmentation. Int. J. Mach. Learn. Cybern. 2022, 13, 963–987. [Google Scholar] [CrossRef]
- Tang, C.; Li, Z.; Wang, J.; Liu, X.; Zhang, W.; Zhu, E. Unified One-Step Multi-View Spectral Clustering. IEEE Trans. Knowl. Data Eng. 2023, 35, 6449–6460. [Google Scholar] [CrossRef]
- Shah, S.A.; Koltun, V. Robust Continuous Clustering. Proc. Natl. Acad. Sci. USA 2017, 114, 9814–9819. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qian, C.; Li, H.; Gao, Y.; Wu, J.; Liu, C.-J.; Zhao, S. An Efficient DBSCAN Optimized by Arithmetic Optimization Algorithm with Opposition-Based Learning. J. Supercomput. 2022, 78, 19566–19604. [Google Scholar] [CrossRef]
- Alturki, A.; Bchir, O.; Ismail, M.M.B. Joint Deep Clustering: Classification and Review. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 863–874. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Dong, Y.; Wei, X.; Tian, L.; Liu, F.; Xu, G. A Novel Double Cluster and Principal Component Analysis-Based Optimization Method for the Orbit Design of Earth Observation Satellites. Int. J. Aerosp. Eng. 2017, 2017, 6396032. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Z.; Gao, Z.; Zhang, M.; Yu, L. Aerodynamic Multi-Objective Integrated Optimization Based on Principal Component Analysis. Chin. J. Aeronaut. 2017, 30, 1336–1348. [Google Scholar] [CrossRef]
- Turchetti, C.; Falaschetti, L. A Manifold Learning Approach to Dimensionality Reduction for Modeling Data. Inf. Sci. 2019, 491, 16–29. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, B.; Qiang, Q. Local Linear Embedding with Adaptive Neighbors. Pattern Recognit. 2023, 136, 109205. [Google Scholar] [CrossRef]
- Decker, K.; Schwartz, H.D.; Mavris, D. Dimensionality Reduction Techniques Applied to the Design of Hypersonic Aerial Systems. In Proceedings of the AIAA AVIATION 2020 FORUM, Online, 15–19 June 2020. [Google Scholar]
- Wang, X.; Li, Z.; Shafieezadeh, A. Seismic Response Prediction and Variable Importance Analysis of Extended Pile-Shaft-Supported Bridges against Lateral Spreading: Exploring Optimized Machine Learning Models. Eng. Struct. 2021, 236, 112142. [Google Scholar] [CrossRef]
- Wang, C.; Matthies, H.G. Coupled Fuzzy-Interval Model and Method for Structural Response Analysis with Non-Probabilistic Hybrid Uncertainties. Fuzzy Sets Syst. 2021, 417, 171–189. [Google Scholar] [CrossRef]
- Wang, C.; Matthies, H.G.; Xu, M.; Li, Y. Epistemic Uncertainty-Based Model Validation via Interval Propagation and Parameter Calibration. Comput. Methods Appl. Mech. Eng. 2018, 342, 161–176. [Google Scholar] [CrossRef]
- Wang, X.; Mazumder, R.K.; Salarieh, B.; Salman, A.M.; Shafieezadeh, A.; Li, Y. Machine Learning for Risk and Resilience Assessment in Structural Engineering: Progress and Future Trends. J. Struct. Eng. 2022, 148, 03122003. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Han, H.; Ma, M.; Qiao, J. Accelerated Gradient Algorithm for RBF Neural Network. Neurocomputing 2021, 441, 237–247. [Google Scholar] [CrossRef]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A Survey of the Recent Architectures of Deep Convolutional Neural Networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep Learning and Its Applications to Machine Health Monitoring. Mech. Syst. Signal Process. 2019, 115, 213–237. [Google Scholar]
- Bi, W.; Chen, W.; Pan, J. Multidisciplinary Reliability Design Considering Hybrid Uncertainty Incorporating Deep Learning. Wirel. Commun. Mob. Comput. Online 2022, 2022, 5846684. [Google Scholar] [CrossRef]
- Tharwat, A. Parameter Investigation of Support Vector Machine Classifier with Kernel Functions. Knowl. Inf. Syst. 2019, 61, 1269–1302. [Google Scholar] [CrossRef]
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; IEEE: Madurai, India, 2019; pp. 1255–1260. [Google Scholar]
- Wang, L.; Misra, G.; Bai, X. A K Nearest Neighborhood-Based Wind Estimation for Rotary-Wing VTOL UAVs. Drones 2019, 3, 31. [Google Scholar] [CrossRef]
- Soleimani, F.; Hajializadeh, D. Bridge Seismic Hazard Resilience Assessment with Ensemble Machine Learning. Structures 2022, 38, 719–732. [Google Scholar] [CrossRef]
- Lim, S.; Chi, S. Xgboost Application on Bridge Management Systems for Proactive Damage Estimation. Adv. Eng. Inform. 2019, 41, 100922. [Google Scholar] [CrossRef]
- Chojaczyk, A.A.; Teixeira, A.P.; Neves, L.C.; Cardoso, J.B.; Guedes Soares, C. Review and Application of Artificial Neural Networks Models in Reliability Analysis of Steel Structures. Struct. Saf. 2015, 52, 78–89. [Google Scholar] [CrossRef]
- Saraygord Afshari, S.; Enayatollahi, F.; Xu, X.; Liang, X. Machine Learning-Based Methods in Structural Reliability Analysis: A Review. Reliab. Eng. Syst. Saf. 2022, 219, 108223. [Google Scholar] [CrossRef]
- Kicinger, R.; Arciszewski, T.; Jong, K.D. Evolutionary Computation and Structural Design: A Survey of the State-of-the-Art. Comput. Struct. 2005, 83, 1943–1978. [Google Scholar] [CrossRef]
- Li, Y.; Liang, X.; Dong, S. Reliability Optimization Design Method Based on Multi-Level Surrogate Model. Eksploat. Niezawodn. 2020, 22, 638–650. [Google Scholar] [CrossRef]
- Denimal, E.; Sinou, J.J. Advanced Computational Technique Based on Kriging and Polynomial Chaos Expansion for Structural Stability of Mechanical Systems with Uncertainties. J. Eng. Math. 2021, 130, 7. [Google Scholar] [CrossRef]
- Meng, Z.; Rıza Yıldız, A.; Mirjalili, S. Efficient Decoupling-Assisted Evolutionary/Metaheuristic Framework for Expensive Reliability-Based Design Optimization Problems. Expert Syst. Appl. 2022, 205, 117640. [Google Scholar] [CrossRef]
- Deb, K.; Gupta, S.; Daum, D.; Branke, J.; Mall, A.K.; Padmanabhan, D. Reliability-Based Optimization Using Evolutionary Algorithms. IEEE Trans. Evol. Comput. 2009, 13, 1054–1074. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Tian, H.; Zhu, H.; Cai, G. Multi-Disciplinary Design Optimization with Fuzzy Uncertainties and Its Application in Hybrid Rocket Motor Powered Launch Vehicle. Chin. J. Aeronaut. 2020, 33, 1454–1467. [Google Scholar] [CrossRef]
- Huang, Y.; Li, J.; Fu, J. Review on Application of Artificial Intelligence in Civil Engineering. Comput. Model. Eng. Sci. 2019, 121, 845–875. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Pan, Q. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends. IEEECAA J. Autom. Sin. 2021, 8, 1627–1643. [Google Scholar] [CrossRef]
- Hamzehkolaei, N.S.; Miri, M.; Rashki, M. An Enhanced Simulation-Based Design Method Coupled with Meta-Heuristic Search Algorithm for Accurate Reliability-Based Design Optimization. Eng. Comput. 2016, 32, 477–495. [Google Scholar] [CrossRef]
- Shen, W.; Guo, X.; Wu, C.; Wu, D. Forecasting Stock Indices Using Radial Basis Function Neural Networks Optimized by Artificial Fish Swarm Algorithm. Knowl.-Based Syst. 2011, 24, 378–385. [Google Scholar] [CrossRef]
- Blum, C.; Dorigo, M. The Hyper-Cube Framework for Ant Colony Optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2004, 34, 1161–1172. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.S.; Talatahari, S.; Alavi, A.H. Firefly Algorithm with Chaos. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 89–98. [Google Scholar] [CrossRef]
- Yang, X.; Deb, S. Cuckoo Search: Recent Advances and Applications. Neural Comput. Appl. 2014, 24, 169–174. [Google Scholar] [CrossRef]
- Dong, Z.; Sheng, Z.; Zhao, Y.; Zhi, P. Robust Optimization Design Method for Structural Reliability Based on Active-Learning MPA-BP Neural Network. Int. J. Struct. Integr. 2023, 14, 248–266. [Google Scholar] [CrossRef]
- He, Q.; Hu, X.; Ren, H.; Zhang, H. A Novel Artificial Fish Swarm Algorithm for Solving Large-Scale Reliability–Redundancy Application Problem. ISA Trans. 2015, 59, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, X.; Wu, D.; Xu, M.; Qiu, Z. Structural Optimization Oriented Time-Dependent Reliability Methodology under Static and Dynamic Uncertainties. Struct. Multidiscip. Optim. 2018, 57, 1533–1551. [Google Scholar] [CrossRef]
- Lopez, R.H.; Torii, A.J.; Miguel, L.F.F.; Cursi, J.E.S.D. An Approach for the Global Reliability Based Optimization of the Size and Shape of Truss Structures. Mech. Ind. 2015, 16, 603. [Google Scholar] [CrossRef]
- Khodam, A.; Farajzadeh, M.S.; Shayanfar, M. A New Hybrid Method for Reliability-Based Optimal Structural Design with Discrete and Continuous Variables. Struct. Eng. Mech. 2023, 85, 369–379. [Google Scholar]
- Valian, E.; Tavakoli, S.; Mohanna, S.; Haghi, A. Improved Cuckoo Search for Reliability Optimization Problems. Comput. Ind. Eng. 2013, 64, 459–468. [Google Scholar] [CrossRef]
AAO | MDF | IDF | |
---|---|---|---|
Disciplinary feasibility of the solution | At convergence | At each iteration | At each iteration |
Multidisciplinary feasibility of the solution | At convergence | At each iteration | At convergence |
Optimized variables | |||
Convergence speed | Fast | Slow | Medium |
Advantage | Simple model; able to parallel | Suitable for complex issues | Discipline decoupling; able to parallel |
Disadvantage | Multiple variables; poor robustness | Need system decomposition | Poor properties in complex issues |
Application | [21,28,29] | [25,30,31] | [27,32,33] |
CO | CSSO | ATC | BLISS | |
---|---|---|---|---|
Efficiency | Low | Fast | Medium | Fast |
Gradient | No | No | No | Yes |
Approximate model | Permissible | Necessary | Permissible | Necessary |
Advantage | Flexible | Parallelizable | Parallelizable | Flexible |
Drawback | Convergence instability | Accuracy depends on approximate models | Not suitable for small problems | Accuracy depends on approximate models |
Application | [35,36] | [46,47] | [53] | [49,50] |
Uncertainty Modeling | Advantages | Drawbacks |
---|---|---|
Probability theory | Adapted to represent aleatory uncertainty | Need information on each singleton of the subset |
Combination of information using Bayesian approach | Handle mainly aleatory uncertainty | |
Evidence theory | Handle both aleatory and epistemic uncertainties | Might be difficult to interpret for design |
No hypothesis needed on the uncertainty distribution inside subsets | Might be difficult to obtain information from experts | |
Fuzzy set theory | Concept of membership function and fuzzy set | Difficult to interpret for design |
Express confidence in uncertainty modeling information | Might be difficult to obtain information from experts | |
Interval theory | Simplicity of modeling | Limitations in uncertainty description |
Convex theory | Consider the correlation between uncertainty parameters | Need a reasonable method for constructing convex model |
Minimize samples for uncertainty quantification | ||
Rough set theory | Describe arbitrary bounded-but-irregular uncertainty set | Uncertainty propagation analysis is influenced by model approximation |
Algorithm | Characteristics | Advantages | Disadvantages | Application |
---|---|---|---|---|
PSO | Bubble-net hunting strategy | Solid robustness | Poor property in solving multidimensional issues | [184,189] |
High accuracy | Inefficient | |||
ABC | Role-switching mechanism | Strong ability to jump out of local optima | Dependence on solid parameters | [178] |
Influenced by pheromone | Good property in solving multidimensional issues | Slow convergence speed | ||
AFS | Preying, following, random behaviors | Fast convergence speed | Easy to fall into local optima | [190] |
Dependence on solid parameters | ||||
ACO | Influenced by pheromone | Good property in solving traversal problems | Easy to fall into local optima | [191] |
Slow convergence speed | ||||
FA | Attracted by fluorescence intensity | Solid robustness | Weak ability in reaching global optimum | [192,193] |
High accuracy | Slow convergence speed | |||
CS | Cuckoo’s nest parasitic behavior | Fast convergence speed | Easy to fall into local optima | [194] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Fan, H.; Qiang, X. A Review of Uncertainty-Based Multidisciplinary Design Optimization Methods Based on Intelligent Strategies. Symmetry 2023, 15, 1875. https://doi.org/10.3390/sym15101875
Wang C, Fan H, Qiang X. A Review of Uncertainty-Based Multidisciplinary Design Optimization Methods Based on Intelligent Strategies. Symmetry. 2023; 15(10):1875. https://doi.org/10.3390/sym15101875
Chicago/Turabian StyleWang, Chong, Haoran Fan, and Xin Qiang. 2023. "A Review of Uncertainty-Based Multidisciplinary Design Optimization Methods Based on Intelligent Strategies" Symmetry 15, no. 10: 1875. https://doi.org/10.3390/sym15101875
APA StyleWang, C., Fan, H., & Qiang, X. (2023). A Review of Uncertainty-Based Multidisciplinary Design Optimization Methods Based on Intelligent Strategies. Symmetry, 15(10), 1875. https://doi.org/10.3390/sym15101875