Interval-Valued Linguistic q-Rung Orthopair Fuzzy TODIM with Unknown Attribute Weight Information
Abstract
:1. Introduction
2. Some Basic Notions
2.1. Linguistic Interval-Valued q-Rung Orthopair Fuzzy Sets
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- .
- (1)
- If , then ;
- (2)
- If , then
- (3)
- ;
- (4)
- .
2.2. TODIM
3. A Novel MAGDM Method as Well as Its Detailed Steps
3.1. Description of a Typical MAGDM Problem Based on LIVq-ROFSs
3.2. The Process of Determining the Weight Vector of Attributes
4. Numerical Example
4.1. The Description of the Problem
4.2. The Decision-Making Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yager, R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2016, 25, 1222–1230. [Google Scholar] [CrossRef]
- Krassimir, T.A.; Parvathi, R. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar]
- Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 2013, 22, 958–965. [Google Scholar] [CrossRef]
- Jana, C.; Muhiuddin, G.; Pal, M. Some Dombi aggregation of Q-rung orthopair fuzzy numbers in multiple-attribute decision making. Int. J. Intel. Syst. 2019, 34, 3220–3240. [Google Scholar] [CrossRef]
- Yu, Q.; Cao, J.; Tan, L.; Liao, Y.; Liu, J. Multiple attribute decision-making based on Maclaurin symmetric mean operators on q-rung orthopair cubic fuzzy sets. Soft Comput. 2022, 26, 9953–9977. [Google Scholar] [CrossRef]
- Yang, W.; Pang, Y. New q-rung orthopair fuzzy partitioned Bonferroni mean operators and their application in multiple attribute decision making. Int. J. Intell. Syst. 2019, 34, 439–476. [Google Scholar] [CrossRef]
- Liu, P.; Chen, S.M.; Wang, P. Multiple-attribute group decision-making based on q-rung orthopair fuzzy power Maclaurin symmetric mean operators. IEEE Tran. Syst. Man Cybern. 2018, 50, 3741–3756. [Google Scholar] [CrossRef]
- Ai, Z.; Xu, Z.; Yager, R.R.; Ye, J. q-rung orthopair fuzzy integrals in the frame of continuous Archimedean t-norms and t-conorms and their application. IEEE Trans. Fuzzy Syst. 2020, 29, 996–1007. [Google Scholar] [CrossRef]
- Wei, G.; Hao, H.; Wei, Y. Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int. J. Intell. Syst. 2018, 33, 1426–1458. [Google Scholar] [CrossRef]
- Ali, J. Norm-based distance measure of q-rung orthopair fuzzy sets and its application in decision-making. Comput. Appl. Math. 2023, 42, 184. [Google Scholar] [CrossRef]
- Li, T.; Qiao, J.; Ding, W. Three-way conflict analysis and resolution based on q-rung orthopair fuzzy information. Inform. Sci. 2023, 638, 118959. [Google Scholar] [CrossRef]
- Wu, X.; Ali, Z.; Mahmood, T.; Liu, P. Power aggregation operators based on Yager t-norm and t-conorm for complex q-rung orthopair fuzzy information and their application in decision-making problems. Complex. Intell. Syst. 2023, 9, 5949–5963. [Google Scholar] [CrossRef]
- Ecer, F.; Ögel, İ.Y.; Krishankumar, R.; Tirkolaee, E.B. The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era. Artif. Intell. Rev. 2023, 56, 13373–13406. [Google Scholar] [CrossRef]
- Peng, X.; Garg, H.; Luo, Z. When content-centric networking meets multi-criteria group decision-making: Optimal cache placement policy achieved by MARCOS with q-rung orthopair fuzzy set pair analysis. Eng. Appl. Artif. Intell. 2023, 123, 106231. [Google Scholar] [CrossRef]
- Zhang, H. Linguistic intuitionistic fuzzy sets and application in MAGDM. J. Appl. Math. 2014, 2014, 432092. [Google Scholar] [CrossRef]
- Yuan, R.; Tang, J.; Meng, F. Linguistic intuitionistic fuzzy group decision making based on aggregation operators. Int. J. Intell. Syst. 2019, 21, 407–420. [Google Scholar] [CrossRef]
- Teng, F.; Liu, P. Multiple-attribute group decision-making method based on the linguistic intuitionistic fuzzy density hybrid weighted averaging operator. Int. J. Intell. Syst. 2019, 21, 213–231. [Google Scholar] [CrossRef]
- Kumar, K.; Chen, S.M. Multiple attribute group decision making based on advanced linguistic intuitionistic fuzzy weighted averaging aggregation operator of linguistic intuitionistic fuzzy numbers. Inform. Sci. 2022, 587, 813–824. [Google Scholar] [CrossRef]
- Garg, H. Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process. Int. J. Intell. Syst. 2018, 33, 1234–1263. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Y.; Xu, L.; Liu, H.B.; Liu, J. Multiattribute group decision-making approach with linguistic pythagorean fuzzy information. IEEE Access 2019, 7, 143412–143430. [Google Scholar] [CrossRef]
- Lin, M.; Wei, J.; Xu, Z.; Chen, R. Multiattribute group decision-making based on linguistic Pythagorean fuzzy interaction partitioned Bonferroni mean aggregation operators. Complexity 2018, 2018, 9531064. [Google Scholar] [CrossRef]
- Sarkar, B.; Biswas, A. Linguistic Einstein aggregation operator-based TOPSIS for multicriteria group decision making in linguistic Pythagorean fuzzy environment. Int. J. Intell. Syst. 2021, 36, 2825–2864. [Google Scholar] [CrossRef]
- Liu, P.; Liu, W. Multiple-attribute group decision-making based on power Bonferroni operators of linguistic q-rung orthopair fuzzy numbers. Int. J. Intell. Syst. 2019, 34, 652–689. [Google Scholar] [CrossRef]
- Liu, P.; Naz, S.; Akram, M.; Muzammal, M. Group decision-making analysis based on linguistic q-rung orthopair fuzzy generalized point weighted aggregation operators. Int. J. Mach. Learn. Cyb. 2022, 13, 883–906. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Y.; Wang, L. The reference ideal TOPSIS method for linguistic q-rung orthopair fuzzy decision making based on linguistic scale function. J. Intell. Fuzzy Syst. 2020, 39, 4111–4131. [Google Scholar] [CrossRef]
- Bao, H.; Shi, X. Robot selection using an integrated MAGDM Model Based on ELECTRE method and linguistic q-rung orthopair fuzzy information. Math. Probl. Eng. 2022, 2022, 1444486. [Google Scholar] [CrossRef]
- Liu, P.; Liu, W. Multiple-attribute group decision-making method of linguistic q-rung orthopair fuzzy power Muirhead mean operators based on entropy weight. Int. J. Intell. Syst. 2019, 34, 1755–1794. [Google Scholar] [CrossRef]
- Liu, D.; Huang, A. Consensus reaching process for fuzzy behavioral TOPSIS method with probabilistic linguistic q-rung orthopair fuzzy set based on correlation measure. Int. J. Intell. Syst. 2020, 35, 494–528. [Google Scholar] [CrossRef]
- Li, T.; Zhang, L.; Zhang, Z. Incomplete linguistic q-rung orthopair fuzzy preference relations and their application to multi-criteria decision making. Complex. Intell. Syst. 2023, 9, 4483–4501. [Google Scholar] [CrossRef]
- Jana, C.; Dobrodolac, M.; Simic, V.; Pal, M.; Sarkar, B.; Stević, Ž. Evaluation of sustainable strategies for urban parcel delivery: Linguistic q-rung orthopair fuzzy Choquet integral approach. Eng. Appl. Artif. Intel. 2023, 126, 106811. [Google Scholar] [CrossRef]
- Shi, X.; Lin, Z.; Zhou, L.; Bao, H. Linguistic q-rung orthopair fuzzy multiple-attribute group decision making based on the grey similarity degree and PROMETHEE II method. J. Intell. Fuzzy Syst. 2022, 43, 6607–6625. [Google Scholar] [CrossRef]
- Gao, P.; Chen, M.; Zhou, Y.; Zhou, L. An approach to linguistic q-rung orthopair fuzzy multi-attribute decision making with LINMAP based on Manhattan distance measure. J. Intell. Fuzzy Syst. 2023, 45, 1341–1355. [Google Scholar] [CrossRef]
- Khan, M.S.A.; Khan, A.S.; Khan, I.A.; Mashwani, W.K.; Hussain, F. Linguistic interval-valued q-rung orthopair fuzzy TOPSIS method for decision making problem with incomplete weight. J. Intell. Fuzzy Syst. 2021, 40, 4223–4235. [Google Scholar] [CrossRef]
- Gong, Z. Novel entropy and distance measures of linguistic interval-valued q-Rung orthopair fuzzy sets. J. Intell. Fuzzy Syst. 2023, 44, 7865–7876. [Google Scholar] [CrossRef]
- Gurmani, S.H.; Chen, H.; Bai, Y. The operational properties of linguistic interval valued q-Rung orthopair fuzzy information and its VIKOR model for multi-attribute group decision making. J. Intell. Fuzzy Syst. 2021, 41, 7063–7079. [Google Scholar] [CrossRef]
- Gomes, L.; Lima, M. TODIMI: Basics and application to multicriteria ranking. Found. Comput. Decis. Sci. 1991, 16, 1–16. [Google Scholar]
- Wei, G. TODIM method for picture fuzzy multiple attribute decision making. Informatica 2018, 29, 555–566. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, P.; Shi, L. An extended multiple attribute group decision-making TODIM method based on the neutrosophic numbers. J. Intell. Fuzzy Syst. 2016, 30, 1773–1781. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Hu, J.; Yao, Z.; Yang, J. New correlation coefficients of Pythagorean fuzzy set and its application to extended TODIM method. J. Intell. Fuzzy Syst. 2022, 43, 509–523. [Google Scholar] [CrossRef]
- Zindani, D.; Maity, S.R.; Bhowmik, S. Complex interval-valued intuitionistic fuzzy TODIM approach and its application to group decision making. J. Am. Intel. Hum. Comp. 2021, 12, 2079–2102. [Google Scholar] [CrossRef]
- Ye, J. Multiple attribute group decision-making methods with unknown weights in intuitionistic fuzzy setting and interval-valued intuitionistic fuzzy setting. Int. J. Gen. Syst. 2013, 42, 489–502. [Google Scholar] [CrossRef]
- Zhang, Z. Hesitant fuzzy multi-criteria group decision making with unknown weight information. Int. J. Fuzzy Syst. 2017, 19, 615–636. [Google Scholar] [CrossRef]
- Biswas, A.; Sarkar, B. Pythagorean fuzzy TOPSIS for multicriteria group decision-making with unknown weight information through entropy measure. Int. J. Intell. Syst. 2019, 34, 1108–1128. [Google Scholar] [CrossRef]
- Ali, J. A q-rung orthopair fuzzy MARCOS method using novel score function and its application to solid waste management. Appl. Intell. 2022, 52, 8770–8792. [Google Scholar] [CrossRef]
- Zhang, X.; Gou, X.; Xu, Z.; Liao, H. A projection method for multiple attribute group decision making with probabilistic linguistic term sets. Int. J. Mach. Learn. Cyb. 2019, 10, 2515–2528. [Google Scholar] [CrossRef]
- Tang, F.; Zhang, Y.; Wang, J. How do enterprises determine which breakthrough invention should be commercialized? A multiple attribute group decision-making-based method. Comput. Appl. Math. 2022, 41, 385. [Google Scholar] [CrossRef]
- Adner, R. Match your innovation strategy to your innovation ecosystem. Harvard Bus. Rev. 2006, 84, 98. [Google Scholar]
- Palmié, M.; Wincent, J.; Parida, V.; Caglar, U. The evolution of the financial technology ecosystem: An introduction and agenda for future research on disruptive innovations in ecosystems. Technol. Forecast. Soc. 2020, 151, 119779. [Google Scholar] [CrossRef]
- Adner, R.; Kapoor, R. Value creation in innovation ecosystems: How the structure of technological interdependence affects firm performance in new technology generations. Strateg. Manag. J. 2010, 31, 306–333. [Google Scholar] [CrossRef]
- Ceccagnoli, M.; Hicks, D. Complementary assets and the choice of organizational governance: Empirical evidence from a large sample of US technology-based firms. IEEE Trans. Eng. Manag. 2012, 60, 99–112. [Google Scholar] [CrossRef]
- Haijian, L. The rigid characteristics of enterprise organizational structure and its impact on strategic change. Sci. Sci. Manag. S.&T. 2007, 3, 126–132. [Google Scholar]
- Zhang, Y. Risk discovery mechanism of innovation ecosystem of hi-tech enterprises. J. Stud. Sci. Sci. 2009, 27, 925–931. [Google Scholar]
- Abreu, A.; Martins, J.D.M.; Calado, J.M.F. Fuzzy logic model to support risk assessment in innovation ecosystems. In Proceedings of the 2018 13th APCA International Conference on Automatic Control and Soft Computing (CONTROLO), Ponta Delgada, Portugal, 4–6 June 2018; IEEE: New York, NY, USA, 2018; pp. 104–109. [Google Scholar]
- Nechaev, A.S.; Ognev, D.V.; Antipina, O.V. Analysis of risk management in innovation activity process. In Proceedings of the 2017 International Conference” Quality Management, Transport and Information Security, Information Technologies” (IT&QM&IS), St. Petersburg, Russia, 24–30 September 2017; IEEE: New York, NY, USA, 2017; pp. 548–551. [Google Scholar]
- Zhang, Y.S. The risk identification and control of innovation ecosystem of hi-tech enterprise. Theory Pract. Financ. Econ. 2008, 23, 113–116. [Google Scholar]
- Peng, B.Y. The ecological and institutionalized process of the decline and fall of enterprises. Acad. Res. 2006, 5, 32–36. [Google Scholar]
- Hannan, M. Structural inertia and organizational change. Sociol. Rev. 1984, 49, 149–164. [Google Scholar] [CrossRef]
- Wang, L.; Bi, X. Risk assessment of knowledge fusion in an innovation ecosystem based on a GA-BP neural network. Cogn. Syst. Res. 2021, 66, 201–210. [Google Scholar] [CrossRef]
- Soto, R.; Elena Robles-Baldenegro, M.; López, V.; Camalich, J.A. MQDM: An iterative fuzzy method for group decision making in structured social networks. Int. J. Intell. Syst. 2016, 32, 17–30. [Google Scholar] [CrossRef]
- Wang, L.; Xue, H. Group Decision-making method based on expert classification consensus information integration. Symmetry 2020, 12, 1180. [Google Scholar] [CrossRef]
G1 | G2 | G3 | G4 | |
---|---|---|---|---|
A1 | ||||
A2 | ||||
A3 | ||||
A4 |
A1 | ||||
A2 | ||||
A3 | ||||
A4 |
A1 | ||||
A2 | ||||
A3 | ||||
A4 |
G1 | G2 | |
---|---|---|
A1 | ||
A2 | ||
A3 | ||
A4 | ||
G1 | G2 | |
A1 | ||
A2 | ||
A3 | ||
A4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tang, F.; Song, Z.; Wang, J. Interval-Valued Linguistic q-Rung Orthopair Fuzzy TODIM with Unknown Attribute Weight Information. Symmetry 2024, 16, 1161. https://doi.org/10.3390/sym16091161
Zhang Y, Tang F, Song Z, Wang J. Interval-Valued Linguistic q-Rung Orthopair Fuzzy TODIM with Unknown Attribute Weight Information. Symmetry. 2024; 16(9):1161. https://doi.org/10.3390/sym16091161
Chicago/Turabian StyleZhang, Yushu, Fangcheng Tang, Zeyuan Song, and Jun Wang. 2024. "Interval-Valued Linguistic q-Rung Orthopair Fuzzy TODIM with Unknown Attribute Weight Information" Symmetry 16, no. 9: 1161. https://doi.org/10.3390/sym16091161
APA StyleZhang, Y., Tang, F., Song, Z., & Wang, J. (2024). Interval-Valued Linguistic q-Rung Orthopair Fuzzy TODIM with Unknown Attribute Weight Information. Symmetry, 16(9), 1161. https://doi.org/10.3390/sym16091161