The Technology of Copper-Based Red Glass Sectilia from the 2nd Century AD Lucius Verus Villa in Rome
Abstract
:1. Introduction
1.1. Brief Overview of the Theory of Opaque Red Glass
1.2. Brief History of Opaque Red Glass Production
1.3. Roman Opaque Red Glass
1.4. The Sectilia from the Gorga Collection
2. Materials and Methods
Analytical Technique
3. Results
3.1. Identification of the Red Hues
3.1.1. The Sampling
3.1.2. Optical Microscopy
3.1.3. UV–Vis Reflectance Spectroscopy with Optical Fibres (FORS)
3.1.4. Colourimetry
3.2. Chemical Analyses
3.2.1. Base Glass Composition
3.2.2. Bulk Composition
3.3. Identification of Colouring Agents
3.3.1. (FEG-SEM)
3.3.2. Raman
3.3.3. XRD
3.3.4. Other Crystalline Phases
4. Discussion
4.1. Cu° Colouring Technique
4.2. Cu2O Colouring Technique
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bamford, C.R. Colour Generation and Control in Glass; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1977; Volume 3, ISBN 1520-6378. [Google Scholar]
- Weyl, W.A. Coloured Glasses; Society of Glass Technology: Sheffield, UK, 1951; ISBN 9780900682063. [Google Scholar]
- Hofmeister, A.M.; Rossman, G.R. Exsolution of metallic copper from Lake County labradorite. Geology 1985, 139, 644–647. [Google Scholar] [CrossRef]
- Xu, H.; Hill, T.R.; Konishi, H.; Farfan, G. Protoenstatite: A new mineral in Oregon sunstones with “watermelon” colors. Am. Mineral. 2017, 102, 2146–2149. [Google Scholar]
- Turner, W.E.S. Glass Fragments from Nimrud of the Eighth to the Sixth Century BC. Iraq 1955, 17, 57–68. [Google Scholar] [CrossRef]
- Brill, R.H.; Cahill, N.D. A Red Opaque Glass from Sardis and Some Thoughts on Red Opaque in General. J. Glass Stud. 1988, 30, 16–27. [Google Scholar]
- Ishida, S.; Takeuchi, N.; Hayashi, M.; Wakamatsu, M. Role of Sn2+ in development of red colour during reheating of copper glass. J. Non Cryst. Solids 1987, 95, 793–800. [Google Scholar] [CrossRef]
- Wakamatsu, M.; Takeuchi, N.; Nagai, H.; Ishida, S. Chemical states of copper and tin in copper glazes fired under various atmospheres. J. Am. Ceram. Soc. 1989, 72, 16–19. [Google Scholar] [CrossRef]
- Nakai, I.; Numako, C.; Hosono, H.; Yamasaki, K. Origin of the red colour of Satsuma copper-ruby glass as determined by EXAFS and optical absorption Spectroscopy. J. Am. Ceram. Soc. 1999, 82, 689–784. [Google Scholar] [CrossRef]
- Padovani, S.; Sada, C.; Mazzoldi, P.; Brunetti, B.; Borgia, I.; Sgamellotti, A.; Giulivi, A.; D’Acapito, F.; Battaglin, G. Copper in glazes of Renaissance luster pottery: Nanoparticles, ions, and local environment. Appl. Phys. 2003, 93, 10058–10063. [Google Scholar] [CrossRef]
- Tress, H.J. Ruby glass and related glasses from standpoint of the chemical potential of oxygen in glass. Part 1. Physics and Chemistry of Glasses. Glass Technol. 1962, 3, 28–36. [Google Scholar]
- Brun, N.; Mazerolles, L.; Pernot, M. Microstructure of opaque red glass containing copper. J. Mater. Sci. Lett. 1991, 10, 1418–1420. [Google Scholar]
- Freestone, I.C.; Stapleton, C.P.; Rigby, V. The production of red glass and enamel in the Late Iron Age. Roman and Byzantine periods. In Through a Glass Brightly: Studies in Byzantine and Medieval Art and Archaeology; Presented to David, Buckton; Entwistle, C., Buckton, D., Eds.; Oxbow Books: Oxford, UK, 2003; pp. 142–154. ISBN 978-1785702518. [Google Scholar]
- Silvestri, A.; Tonietto, S.; D’Acapito, F.; Molin, G. The role of copper on colour of palaeo-Christian glass mosaic tesserae: An XAS study. J. Cult. Herit. 2012, 13, 137–144. [Google Scholar]
- Silvestri, A.; Tonietto, S.; Molin, G.; Guerriero, P. The palaeo-Christian glass mosaic of St. Prosdocimus (Padova, Italy): Archaeometric characterisation of tesserae with copper- or tin-based opacifiers. J. Archaeol. Sci. 2014, 42, 51–67. [Google Scholar]
- Ahmed, A.A.; Ashour, G.M.; El-Shamy, T.M. The effect of melting conditions on the crystallization of cuprous oxide and copper in glass. In Proceedings of the 11th international Congress of Glass, Prague, Czech Republic, 4–8 July 1977; pp. 177–187. [Google Scholar]
- Ahmed, A.A.; Ashour, G.M. Effect of heat treatment on the crystallisation of cuprous oxide in glass. Glass Technol. 1981, 22, 24–33. [Google Scholar]
- Freestone, I.C. Composition and microstructure of opaque red glass. In Bismon and Freestone. In Early Vitreous Materials;British Museum Occasional Paper, 56; Bimson, M., Freestone, I.C., Eds.; British Museum: London, UK, 1987; pp. 173–191. ISBN 978-0861590568. [Google Scholar]
- Barber, D.J.; Freestone, I.C.; Moulding, K.M. Ancient copper red glasses: Investigation and analysis by microbeam techniques. In From Mine to Microscope. Advances in the Study of Ancient Technology; Shortland, A.J., Freestone, I.C., Rehren, T., Eds.; Oxbow Books: Oxford, UK, 2009; pp. 115–127. ISBN 978-1-84217-259-9. [Google Scholar]
- Blomme, A.; Degryse, P.; Dotsika, E.; Ignatiadou, D.; Longinelli, A.; Silvestri, A. Provenance of polychrome and colourless 8the4th century BC glass from Pieria, Greece: A chemical and isotopic approach. J. Archeol. Sci. 2017, 78, 134–146. [Google Scholar]
- Boschetti, C.; Henderson, J.; Evans, J. Mosaic tesserae from Italy and the production of Mediterranean coloured glass (4th century BCE–4th century CE). Part II: Isotopic provenance. J. Archaeol. Sci. Rep. 2017, 11, 647–657. [Google Scholar]
- Stapleton, C.P.; Freestone, I.C.; Bowman, S.G.E. Composition and Origin of Early Mediaeval Opaque Red Enamel from Britain and Ireland. J. Archaeol. Sci. 1999, 26, 913–921. [Google Scholar]
- Bimson, M. Opaque red glass: A review. In Early Vitreous Materials; British Museum Occasional Paper, 56; Bimson, M., Freestone, I.C., Eds.; British Museum: London, UK, 1987; pp. 165–171. ISBN 978-0861590568. [Google Scholar]
- Hughes, M.J. A technology study of opaque red glass of the Iron Age in Britain. Proc. Prehist. Soc. 1972, 38, 98–107. [Google Scholar]
- Brun, N.; Pernot, M. The Opaque Red Glass of Celtic Enamels from Continental Europe. Archaeometry 1992, 34, 235–252. [Google Scholar]
- Ignatiadou, D. A Haematinon bowl from Pydna. In Proceedings of the Annales du 18e Congrès de l’Association International pour l’Histoire du Verre, Thessaloniki, Greece, 20–25 September 2009; Ignatiadou, D., Antonaras, A., Eds.; ZITI Publishing: Thessaloniki, Greece, 2012; pp. 69–74. [Google Scholar]
- Boschetti, C. Working glass in Ptolemaic Egypt, a new evidence from Denderah. J. Archae. Sci. Rep. 2018, 22, 550–558. [Google Scholar]
- Weinberg, G.D. Glass Vessels in Ancient Greece. Their History Illustrated from the Collection of the National Archaeological Museum, Athens; Archaeological Receipt Fund: Athens, Greek, 1992; pp. 112–115. [Google Scholar]
- Bandiera, M.; Lehuédé, P.; Verità, M.; Alves, L.; Biron, I.; Vilarigues, M. Nanotechnology in Roman Opaque Red Glass from the 2nd Century AD. Archaeometric Investigation in Red Sectilia from the Decoration of the Lucius Verus Villa in Rome. Heritage 2019, 2, 2597–2611. [Google Scholar]
- Arletti, R. Roman coloured and opaque glass: A chemical and spectroscopic study. Appl. Phys. A 2006, 83, 239–245. [Google Scholar]
- Moretti, C.; Gratuze, B. Vetri rossi al rame e avventurina. Confronto di analisi e ricette. Riv. Stn. Sper. Vetro 1999, 3, 147–160. [Google Scholar]
- Sayre, E.V.; Smith, R.W. Compositional categories of ancient glass. Science 1961, 133, 1824–1826. [Google Scholar]
- Freestone, I.C.; Gorin-Rose, Y.; Hughes, M.J. Primary glass from Israel and the production of glass in Late antiquity and the early Islamic period. In La Route du Verre, Ateliers Primaires et Secondaries du Second Millenaire av. J.-C. ou Moyen Age (TMO 33); Nenna, M.D., Ed.; Maison d’Orient: Lyon, France, 2000; pp. 65–83. [Google Scholar]
- Paynter, S.; Kearns, T.; Cool, H.; Chenery, S. Roman coloured glass in the Western provinces: The glass cakes and tesserae fromWest Clacton in England. J. Archaeol. Sci. 2015, 62, 66–81. [Google Scholar]
- Jackson, C.M.; Cottam, S. ‘A green though in a green shade’; Compositional and typological observation concerning the production of emerald green glass vessels in the 1st century AD. J. Archaeol. Sci. 2015, 61, 139–148. [Google Scholar]
- Freestone, I.; Stapleton, P.C. Composition, technology and production of coloured glasses from mosaic vessels of the early Roman Empire. In Glass of the Roman Empire; Bayley, J., Freestone, I., Jackson, C., Eds.; Oxbow: Oxford, UK, 2013. [Google Scholar]
- Schibille, N.; Degryse, P.; Corremans, M.; Specht, C.G. Chemical characterisation of glass mosaic tesserae from sixth-century Sagalassos (south–west Turkey): Chronology and production techniques. J. Archaeol. Sci. 2012, 39, 1480–1492. [Google Scholar] [CrossRef]
- Fiori, C. Production technology of Byzantine red mosaic glasses. Ceram. Int. 2015, 41, 3152–3157. [Google Scholar]
- Maltoni, S.; Silvestri, A.; Molin, G. Opaque red glass tesserae from Roman and early-Byzantine sites of north-eastern Italy: New light on production technologies. In Proceedings of the Annales du 20e Congrès de l’Association Internationale pour l’Histoire du Verre, Fribourg, Switzerland, 7–11 September 2015; Wolf, S., de Pury-Gysel, A., Eds.; Verlag Marie Leidorf GmbH: Rahden, Germany, 2017; pp. 280–287. [Google Scholar]
- Maltoni, S.; Silvestri, A. A Mosaic of Colors: Investigating Production Technologies of Roman Glass Tesserae from North eastern Italy. Minerals 2018, 8, 255. [Google Scholar]
- Verità, M.; Santopadre, P. Unusual Glass Tesserae from a Third-century Mosaic in Rome. J. Glass. Stud. 2015, 57, 287–292. [Google Scholar]
- Nenna, M.D.; Gratuze, B. Etude diachronique des compositions de verres employes dans les vases mosaiques antiques: Resultats preliminaires. In Proceedings of the Annales du 17e Congrés de l’Association Internationale pour l’Histoire du Verre, Antwerp, Belgium, 4–8 September 2006; Janssens, K., Degryse, P., Cosyns, P., Caen, J., Van’t dack, L., Eds.; University Press Antwerp: Antwerp, Belgium, 2009; pp. 199–205. [Google Scholar]
- Boschetti, C.; Henderson, J.; Evans, J.; Leonelli, C. Mosaic tesserae from Italy and the production of Mediterranean coloured glass (4th century BCE–4th century CE). Part I: Chemical composition and technology. J. Archaeol. Sci. Rep. 2016, 7, 303–311. [Google Scholar]
- Henderson, J. Chemical characterization of Roman glass vessels, enamels and tesserae. Jewel. Stud. 1991, 5, 65–77. [Google Scholar] [CrossRef]
- Santagostino Barbone, A.; Gliozzo, E.; D’acapito, F.; Memmi Turbanti, I.; Turchiano, M.; Volpe, G. The sectilia panels of faragola (Ascoli Satriano, southern Italy): A multi-analytical study of the red, orange and yellow glass slabs. Archaeometry 2008, 50, 451–473. [Google Scholar] [CrossRef]
- Barca, D.; Basso, E.; Bersani, D.; Galli, G.; Invernizzi, C.; La Russa, M.F.; Lottici, P.P.; Malagodi, M.; Ruffolo, S.A. Vitreous tesserae from the calidarium mosaics of the Villa dei Quintili, Rome. Chemical composition and production technology. Microchem. J. 2016, 124, 726–735. [Google Scholar] [CrossRef]
- Schibille, N.; Boschetti, C.; Valero, M.A.; Veron, E.; Juan, J. The Color Palette of the Mosaics in the Roman Villa of Noheda (Spain). Minerals 2020, 10, 272. [Google Scholar] [CrossRef] [Green Version]
- Davidson, S. Conservation and Restoration of Glass, 2nd ed.; Butterworth-Heinemann Publisher: Oxford, UK, 1997. [Google Scholar]
- Brill, R.H. Kenchreai Panel Revisited; The Corning Glass Newsletter, Summer: Corning, NY, USA, 1996; pp. 1–2. [Google Scholar]
- Saguì, L.; Santopadre, P.; Verità, M. Technology. Colours, Forms, and Shapes in the 2nd Century Glass Opus Sectile Materials from the Villa of Lucius Verus in Rome. In Proceedings of the Annales du 18e Congrès de l’Association International pour l’Histoire du Verre, Thessaloniki, Greece, 20–25 September 2009; Ignatiadou, D., Antonaras, A., Eds.; ZITI Publishing: Thessaloniki, Greece, 2012; pp. 133–138. [Google Scholar]
- Bacchelli, B.; Barbera, M.; Pasqualucci, R.; Saguì, L. Nuove scoperte sulla provenienza dei pannelli in opus sectile vitreo della Collezione Gorga. In Proceedings of the Conference: Atti del II Colloquio AISCOM, Roma, Italy, 5–7 December 1994; Bragantini, I., Guidobaldi, F., Eds.; Istituto Internazionale di Studi Liguri: Bordighera, Italy, 1995; pp. 447–466. [Google Scholar]
- Caserta, E. Roma (via Cassia)—La villa di Lucio Vero alla luce delle recenti indagini archeologiche. In Notizie degli scavi di Antichità; Bardi Edizioni: Roma, Italy, 2012; pp. 53–191. [Google Scholar]
- Verità, M.; Maggetti, M.; Saguì, L.; Santopadre, P. Colors of Roman Glass: An Investigation of the Yellow Sectilia in the Gorga Collection. J. Glass Stud. 2013, 55, 21–34. [Google Scholar]
- Tesser, E.; Verità, M.; Lazzarini, L.; Falcone, R.; Saguì, L.; Antonelli, F. Glass in imitation of exotic marbles: An analytical investigation of 2nd century AD Roman sectilia from the Gorga collection. J. Cult. Herit. 2020, 42, 202–212. [Google Scholar] [CrossRef]
- Rosi, F.; Grazia, C.; Gabrieli, F.; Romani, A.; Paolantoni, M.; Vivani, R.; Brunetti, B.G.; Colomban, P.; Miliani, C. UV–Vis-NIR and micro-Raman spectroscopies for the no destructive identification of Cd1—xZnxS solid solutions in cadmium yellow pigments. Microchem. J. 2016, 124, 856–867. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Murphy, A.B. Band-gap determination from diffuse reflectance measurements of semiconductor films. and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 2007, 91, 1326–1337. [Google Scholar] [CrossRef]
- Theja, G.S.; Lowrence, R.C.; Ravi, V.; Nagarajan, S.; Anthony, S.P. Synthesis of Cu2O micro/nanocrystals with tunable morphologies using coordinating ligands as structure controlling agents and antimicrobial studies. CrystEngComm 2014, 16, 9866–9872. [Google Scholar] [CrossRef]
- Verità, M.; Basso, R.; Wypyski, M.T.; Koestler, R.J. X-ray microanalysis of ancient glassy materials: A comparative study of wavelength dispersive and energy dispersive technique. Archaeometry 1994, 36, 241–251. [Google Scholar]
- Aceto, M.; Agostino, A.; Fenogli, G.; Idone, A.; Gulmini, M.; Picollo, M.; Ricciardi, P.; Delaney, J.K. Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR. reflectance spectrophotometry. Anal. Method 2014, 6, 1488–1500. [Google Scholar]
- Picollo, M.; Aceto, M.; Vittorino, T. UV-Vis spectroscopy. Phys. Sci. Rev. 2018, 4, 1–14. [Google Scholar]
- Bacci, M.; Corallini, A.; Orlando, A.; Picollo, M.; Radicati, B. The ancient stained windows by Nicolò di Pietro Gerini in Florence. A novel diagnostic tool for non-invasive in situ diagnosis. J. Cult. Herit. 2007, 8, 235–241. [Google Scholar]
- Drünert, F.; Blanz, M.; Pollok, K.; Pan, Z.; Wondraczek, L.; Möncke, D. Copper-based opaque red glasses e Understanding the colouring. Opt. Mater. 2018, 76, 375–381. [Google Scholar]
- Nagao, H.; Misonou, M.; Kawahara, H. Mechanism of Coloration in Copper-Stained Float Glass. J. Non Cryst. Solids 1990, 120, 199–206. [Google Scholar]
- Capatina, C. The study of copper ruby glass. Ceram. Silik. 2005, 49, 283–286. [Google Scholar]
- Möncke, D.; Palles, D.; Palamara, E.; Papageorgiou, M.; Kamitsos, E.I.; Zacharias, N. Coloring Vitreous Materials: Pigments. Colloids and Ions in Glasses and Glazes from the Mycenaean to Medieval Periods-Probed by Spectroscopic Techniques. In Proceedings of the Conference: 3rd ARCH_RNT Archaeological Research and New Technologies, Kalamata, Greece, 22–23 October 2010; pp. 153–164. [Google Scholar]
- Bacci, M.; Baldini, F.; Carla, R.; Linari, R. Color Analysis of the Brancacci Chapel Frescoes. Appl. Spectrosc. 1991, 45, 26–31. [Google Scholar]
- Banerjee, S.; Chakravorty, D. Optical absorption by nanoparticles of Cu2O. Europhys. Lett. 2000, 52, 468–473. [Google Scholar]
- Vratny, F.; Kokalas, J.J. The Reflectance Spectra of Metallic Oxides in the 300 to 1000 Millimicron Region. Appl. Spectrosc. 1962, 16, 176–184. [Google Scholar]
- Brill, R.H. Chemical Analyses of Early Glasses; Volume 2 Tables of Analyses; The Corning Museum of Glass: Corning, NY, USA, 1999; ISBN 0-872900-143-2. [Google Scholar]
- Lilyquist, C.; Brill, R.H. Studies in Early Egyptian Glass; Metropolitan Museum of Art: New York, NY, USA, 1993; ISBN 978-0300200195. [Google Scholar]
- Colomban, P.; Schreiber, H.D. Raman signature modification induced by copper nanoparticles in silicate glass. J. Raman Spectrosc. 2005, 36, 884–890. [Google Scholar] [CrossRef] [Green Version]
- Colomban, P.; Tourniè, A.; Ricciardi, P. Raman spectroscopy of copper nanoparticle-containing glass matrices: Ancient red stained-glass windows. J. Raman Spectrosc. 2009, 40, 1949–1955. [Google Scholar] [CrossRef]
- Cesaratto, A.; Sichel, P.; Bersani, D.; Lottici, P.P.; Montenero, A.; Salvioli-Mariani, E.; Catarsi, M. Characterization of archeological glasses by micro-Raman spectroscopy. J. Raman Spectrosc. 2010, 41, 1682–1687. [Google Scholar]
- Basso, E.; Invernizzi, C.; Malagodi, M.; La Russa, M.F.; Bersani, D.; Lottici, P.P. Characterization of colorants and opacifiers in roman glass mosaic tesserae through spectroscopic and spectrometric techniques. J. Raman Spectrosc. 2014, 45, 238–245. [Google Scholar] [CrossRef]
- Meyer, B.K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Kramm, B.; Klar, P.J.; Sander, T.; Reindl, C.; Heiliger, C.; et al. The physics of copper oxide (Cu2O). Semicond. Semimet. 2013, 88, 201–226. [Google Scholar]
- Volf, M.B. Chemical Approach to Glass; Elsevier Science Publishing Company Inc.: Amsterdam, The Netherlands, 1984; Volume 7, ISBN 0-444-99635-4. [Google Scholar]
- Gedzevičiūtē, V.; Welter, N.; Schüssler, U.; Weiss, C. Chemical composition and colouring agents of Roman mosaic and millefiori glass, studied by electron microprobe analysis and Raman microspectroscopy. Archaeol. Anthropol. Sci. 2009, 1, 15–29. [Google Scholar]
- Tite, M.S.; Shortland, A.; Maniatis, Y.; Kavoussanaki, D.; Harris, S.A. The composition of the soda-rich and mixed alkali plant ashes used in the production of glass. J. Archaeol. Sci. 2006, 33, 1284–1292. [Google Scholar] [CrossRef]
- Kunicki-Goldfinger, J.; Freestone, I.C.; McDonald, I.; Hobot, J.A.; Gilderdale-Scott, H.; Ayers, T. Technology, production and chronology of red window glass in the medieval period—Rediscovery of a lost technology. J. Archaeol. Sci. 2014, 41, 89–105. [Google Scholar]
- Tress, H.J. Ruby glass and related glasses from standpoint of the chemical potential of oxygen in glass. Part 2. Gold and copper glasses. Glass Technol. 1962, 3, 95–106. [Google Scholar]
- Ratke, L.; Vooehees, P.W. Growth and Coarsening. Ostawald Ripening, in Material Processing, 1st ed.; Springer: New York, NY, USA, 2002; ISBN 978-3-642-07644-2. [Google Scholar]
- Moretti, C.; Gratuze, B.; Hreglich, S. L’avventurina: (II parte) la tecnologia e le analisi. Riv. Stn. Sper. Vetro 2010, 6, 29–47. [Google Scholar]
- Cholakova, A.; Rehren, T. Producing black glass during the Roman period–notes on a crucible fragment from Serdica, Bulgaria. In Proceedings of the 39th International Symposium for Archaeometry, Leuven, Belgium, 28 May–1 June 2012; Scott, R., Braekmans, M., Degryse, P., Eds.; Centre for Archaeological Sciences: Leuven, Belgium, 2014; pp. 261–267. [Google Scholar]
- Rehren, T.; Cholakova, A.; Zivanovi, C.M. The making of black glass in Late Roman Doclea. New Antiq. Doclea 2012, 3, 71–90. [Google Scholar]
- Maltoni, S.; Silvestri, A. Innovation and tradition in the fourth century mosaic of the Casa delle Bestie Ferite in Aquileia, Italy: Archaeometric characterisation of the glass tesserae. Archaeol. Anthropol. Sci. 2018, 10, 415–429. [Google Scholar] [CrossRef]
- Cable, M.; Smedley, J.W. The Replication of an opaque red glass from Nimrud. In Early Vitreous Materials; British Museum Occasional Paper 56; Bimson, M., Freestone, I.C., Eds.; British Museum: London, UK, 1987; pp. 151–164. ISBN 978-0861590568. [Google Scholar]
Group | Samples | O.M. | FORS | FEG-SEM | EMPA | Raman | XRD |
---|---|---|---|---|---|---|---|
Gr-1 | R2-R3-R4-R5-R6-R7-R8-R14-R15-R16; R25-R26-R27-R28-R29-R30-R31-R32-R33-R34 | R2-R3-R4-R5-R6-R7-R8-R14-R15-R16; R25-R26-R27-R28-R29-R30-R31-R32-R33-R34 | R2-R3-R4-R5-R6-R7-R8-R14-R15-R16; R25-R26-R27-R28-R29-R30-R31-R32-R33-R34 | R2-R3-R4-R5-R6-R7-R8-R14-R16-R26-R27-R31-R33 | R2-R3-R4-R5-R6-R7-R8 | R2-R3-R4-R5-R6-R7-R8-R25-R26-R27-R28-R29-R30-R31-R34 | R2-R4-R5 |
Gr-2 | R10-R17-R18-R19-R20-R21 | R10-R17-R18-R19-R20-R21 | R10-R17-R18-R19-R20-R21 | R10-R17-R19 | R10 | R10-R17-R18-R19-R20 R21 | R10 |
Gr-3 | R1-R22-R23 | R1-R22-R23 | R1-R22 | R1-R22 | R1 | R1-R22 | / |
Gr-4 | R9-R11-R12-R13 | R9-R11-R12-R13 | R9-R11-R12-R13 | R9-R11-R12 | R9 | R9-R11-R12-R13 | / |
Gr-5 | AR1-AR2- AR4-AR6-AR7-AR-8 | AR1-AR2- AR4-AR6-AR7-AR-8 | AR1-AR2-AR4-AR6-AR7-AR-8 | AR1-AR2- AR4-AR8 | AR1-AR2- AR4 | AR1-AR2-AR4-AR6-AR7-AR-8 | AR1-AR2- AR4 |
Group | Colour | Colorimetric Coordinates CIE L*a*b* | ||
---|---|---|---|---|
L* | a* | b* | ||
Gr-1 | Brick red | 34–36.3 | 20.4–26.7 | 10.7–13.3 |
Gr-2 | Reddish-brown | 33.7–36 | 13.3–16.8 | 9.2–10.6 |
Gr-3 | Red banded | 24–28 | 1.3–6.3 | 1.2–5.3 |
Gr-4 | Sealing wax | 34.6–40.5 | 15.6–26 | 7–11.2 |
Gr-5 | Yellowish orange | 49.3–50.1 | 24.7–29 | 29–34 |
Gr-5 | Reddish orange | 43.8–46.2 | 30.3–32.4 | 28.4–30.2 |
Sample | Group | SiO2 | Al2O3 | Na2O | K2O | CaO | MgO | SO3 | P2O5 | Cl | TiO2 | Fe2O3 | MnO | CuO | PbO | SnO2 | Sb2O5 | As2O3 | ZnO | BaO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R-2 * | Gr-1 | 59.0 | 1.7 | 12.9 | 3.1 | 11.5 | 3.0 | 0.23 | 1.1 | 0.73 | 0.12 | 1.3 | 0.40 | 2.0 | 1.3 | 1.2 | 0.12 | <0.02 | 0.07 | <0.02 |
S.D. | 0.98 | 0.04 | 0.21 | 0.09 | 0.19 | 0.10 | 0.02 | 0.03 | 0.04 | 0.04 | 0.10 | 0.03 | 0.39 | 0.13 | 0.05 | 0.05 | 0.05 | |||
R-3 * | Gr-1 | 57.8 | 2.4 | 13.1 | 1.9 | 8.0 | 1.7 | 0.20 | 0.68 | 0.75 | 0.20 | 1.6 | 0.43 | 2.0 | 8.3 | 0.28 | 0.62 | 0.05 | 0.08 | <0.02 |
S.D. | 0.73 | 0.04 | 0.91 | 0.05 | 0.46 | 0.04 | 0.03 | 0.03 | 0.01 | 0.02 | 0.13 | 0.02 | 0.13 | 0.13 | 0.03 | 0.05 | 0.02 | 0.13 | ||
R-4 * | Gr-1 | 58.2 | 1.4 | 14.2 | 3.7 | 11.7 | 3.2 | 0.25 | 1.4 | 0.80 | 0.12 | 1.1 | 0.40 | 2.2 | 0.53 | 0.40 | 0.10 | 0.03 | 0.10 | <0.02 |
S.D. | 0.16 | 0.03 | 0.15 | 0.03 | 0.40 | 0.07 | 0.01 | 0.02 | 0.01 | 0.03 | 0.07 | 0.03 | 0.20 | 0.07 | 0.05 | 0.05 | 0.02 | 0.02 | ||
R-5 * | Gr-1 | 59.2 | 1.8 | 12.8 | 3.1 | 11.7 | 2.9 | 0.18 | 1.1 | 0.80 | 0.15 | 1.2 | 0.35 | 2.0 | 1.2 | 1.1 | 0.08 | <0.02 | 0.05 | 0.04 |
S.D. | 0.09 | 0.01 | 0.06 | 0.02 | 0.10 | 0.03 | 0.04 | 0.03 | 0.01 | 0.03 | 0.02 | 0.04 | 0.08 | 0.03 | 0.02 | 0.05 | 0.02 | 0.03 | ||
R-6 * | Gr-1 | 59.8 | 1.6 | 12.2 | 3.7 | 12.3 | 2.9 | 0.21 | 1.5 | 0.75 | 0.15 | 1.1 | 0.35 | 2.1 | 0.65 | 0.25 | 0.14 | <0.02 | 0.05 | 0.07 |
S.D. | 0.23 | 0.02 | 0.10 | 0.04 | 0.21 | 0.05 | 0.03 | 0.03 | 0.04 | 0.02 | 0.04 | 0.01 | 0.10 | 0.05 | 0.06 | 0.05 | 0.02 | 0.03 | ||
R-7 * | Gr-1 | 59.0 | 1.8 | 13.8 | 3.0 | 12.4 | 2.9 | 0.23 | 1.3 | 0.77 | 0.17 | 1.3 | 0.35 | 1.8 | 0.55 | 0.27 | 0.12 | <0.02 | 0.05 | 0.08 |
S.D. | 0.47 | 0.77 | 0.26 | 0.23 | 1.41 | 0.19 | 0.03 | 0.04 | 0.21 | 0.08 | 0.40 | 0.02 | 0.31 | 0.17 | 0.08 | 0.05 | 0.02 | 0.03 | ||
R-8 * | Gr-1 | 58.4 | 1.5 | 14.1 | 3.6 | 12.1 | 3.1 | 0.23 | 1.4 | 0.80 | 0.15 | 1.1 | 0.40 | 2.1 | 0.40 | 0.32 | 0.12 | <0.02 | <0.02 | 0.08 |
S.D. | 1.35 | 0.08 | 0.79 | 0.24 | 1.06 | 0.22 | 0.04 | 0.05 | 0.07 | 0.02 | 0.10 | 0.02 | 0.37 | 0.06 | 0.02 | 0.05 | 0.03 | |||
R14 | Gr-1 | 58.8 | 1.4 | 14.3 | 3.4 | 11.4 | 2.6 | 0.32 | 1.1 | 0.83 | 0.11 | 1.2 | 0.35 | 2.8 | 0.26 | 0.60 | <0.1 | <0.1 | <0.1 | <0.1 |
S.D. | 0.26 | 0.04 | 0.07 | 0.03 | 0.21 | 0.04 | 0.05 | 0.05 | 0.03 | 0.04 | 0.09 | 0.06 | 0.26 | 0.06 | 0.11 | |||||
R16 | Gr-1 | 59.2 | 1.4 | 13.6 | 3.4 | 11.3 | 2.6 | 0.35 | 1.0 | 0.77 | 0.15 | 1.2 | 0.30 | 2.8 | 0.67 | 0.51 | 0.21 | <0.1 | <0.1 | <0.1 |
S.D. | 0.60 | 0.09 | 0.24 | 0.09 | 0.51 | 0.05 | 0.07 | 0.08 | 0.04 | 0.06 | 0.09 | 0.08 | 0.32 | 0.09 | 0.13 | 0.13 | ||||
R26 | Gr-1 | 60.8 | 1.4 | 13.1 | 3.4 | 11.5 | 2.4 | 0.25 | 1.2 | 0.82 | 0.09 | 1.1 | 0.35 | 2.3 | 0.31 | 0.46 | <0.1 | <0.1 | <0.1 | <0.1 |
S.D. | 0.24 | 0.04 | 0.06 | 0.04 | 0.15 | 0.05 | 0.05 | 0.06 | 0.02 | 0.06 | 0.07 | 0.09 | 0.05 | 0.06 | 0.11 | |||||
R27 | Gr-1 | 59.2 | 1.5 | 12.8 | 2.9 | 11.3 | 2.4 | 0.29 | 0.90 | 0.78 | 0.12 | 1.4 | 0.33 | 2.9 | 1.1 | 1.2 | 0.18 | <0.1 | <0.1 | <0.1 |
S.D. | 0.41 | 0.07 | 0.07 | 0.06 | 0.13 | 0.02 | 0.13 | 0.09 | 0.04 | 0.08 | 0.13 | 0.09 | 0.38 | 0.11 | 0.13 | 0.14 | ||||
R31 | Gr-1 | 57.7 | 1.6 | 11.1 | 3.5 | 12.1 | 2.6 | 0.15 | 1.3 | 0.64 | 0.18 | 3.3 | 0.56 | 1.8 | 1.9 | 0.88 | <0.1 | <0.1 | <0.1 | <0.1 |
S.D. | 0.21 | 0.05 | 0.05 | 0.04 | 0.09 | 0.03 | 0.03 | 0.04 | 0.04 | 0.08 | 0.09 | 0.12 | 0.09 | 0.08 | 0.07 | |||||
R33 | Gr-1 | 58.3 | 1.4 | 11.4 | 3.7 | 11.8 | 3.0 | 0.35 | 1.4 | 0.65 | 0.14 | 1.3 | 0.41 | 2.8 | 1.5 | 0.87 | 0.30 | <0.1 | <0.1 | <0.1 |
S.D. | 0.76 | 0.11 | 0.08 | 0.09 | 0.26 | 0.04 | 0.07 | 0.09 | 0.03 | 0.06 | 0.13 | 0.08 | 0.34 | 0.20 | 0.37 | 0.13 | ||||
R-10 * | Gr-2 | 60.5 | 2.5 | 18.0 | 0.75 | 5.9 | 0.96 | 0.25 | 0.23 | 1.1 | 0.15 | 4.7 | 0.53 | 2.5 | 1.0 | 0.30 | 0.35 | 0.10 | <0.02 | 0.05 |
S.D. | 0.17 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.21 | 0.03 | 0.04 | 0.17 | 0.02 | 0.03 | ||
R17 | Gr-2 | 60.2 | 2.2 | 18.3 | 0.72 | 5.8 | 0.60 | 0.49 | 0.17 | 1.1 | 0.18 | 4.7 | 0.50 | 3.2 | 1.0 | 0.48 | <0.1 | <0.1 | <0.1 | <0.1 |
S.D. | 0.21 | 0.12 | 0.09 | 0.04 | 0.05 | 0.05 | 0.08 | 0.03 | 0.02 | 0.06 | 0.07 | 0.04 | 0.22 | 0.05 | 0.15 | |||||
R19 | Gr-2 | 60.5 | 2.1 | 17.0 | 0.73 | 6.1 | 0.58 | 0.72 | 0.13 | 0.89 | 0.09 | 5.0 | 0.38 | 3.3 | 1.1 | 0.46 | 0.68 | 0.13 | <0.1 | <0.1 |
S.D. | 0.27 | 0.05 | 0.06 | 0.02 | 0.09 | 0.04 | 0.05 | 0.06 | 0.02 | 0.03 | 0.08 | 0.07 | 0.27 | 0.07 | 0.09 | 0.09 | 0.07 | |||
R-1 * | Gr-3 | 64.6 | 2.8 | 15.5 | 0.74 | 8.0 | 0.80 | 0.17 | 0.16 | 0.72 | 0.12 | 4.5 | 0.60 | 0.27 | 0.45 | 0.04 | 0.40 | 0.05 | 0.05 | <0.02 |
S.D. | 0.32 | 0.03 | 0.02 | 0.06 | 0.05 | 0.03 | 0.04 | 0.02 | 0.12 | 0.02 | 0.34 | 0.15 | 0.02 | 0.03 | 0.02 | 0.05 | 0.03 | 0.01 | ||
R1 red | Gr-3 | 63.8 | 2.9 | 16.3 | 0.70 | 8.0 | 0.70 | 0.37 | 0.08 | 0.41 | 0.12 | 5.4 | 0.55 | 0.10 | 0.14 | 0.39 | <0.1 | <0.1 | <0.1 | <0.1 |
S.D. | 0.02 | 0.02 | 0.02 | 0.07 | 0.04 | 0.03 | 0.06 | 0.01 | 0.05 | 0.01 | 0.03 | 0.09 | 0.00 | 0.03 | 0.001 | |||||
R1 black | Gr-3 | 64.4 | 2.8 | 16.4 | 0.70 | 8.0 | 0.70 | 0.30 | 0.03 | 0.61 | 0.12 | 4.6 | 0.58 | 0.11 | 0.15 | 0.35 | <0.1 | <0.1 | <0.1 | <0.1 |
S.D. | 0.07 | 0.01 | 0.02 | 0.05 | 0.04 | 0.00 | 0.02 | 0.02 | 0.01 | 0.02 | 0.15 | 0.05 | 0.02 | 0.02 | 0.02 | |||||
R22 | Gr-3 | 64.9 | 2.5 | 16.2 | 0.68 | 7.9 | 0.60 | 0.51 | 0.19 | 0.91 | 0.08 | 3.9 | 0.68 | 0.31 | 0.20 | 0.22 | <0.1 | <0.1 | <0.1 | <0.1 |
S.D. | 0.71 | 0.07 | 0.09 | 0.06 | 0.05 | 0.04 | 0.05 | 0.04 | 0.03 | 0.07 | 0.64 | 0.15 | 0.16 | 0.09 | 0.16 | |||||
R22 red | Gr-3 | 64.3 | 2.5 | 16.3 | 0.67 | 7.8 | 0.61 | 0.52 | 0.17 | 0.88 | 0.08 | 4.5 | 0.55 | 0.38 | 0.26 | 0.24 | <0.1 | <0.1 | <0.1 | <0.1 |
S.D. | 0.21 | 0.07 | 0.08 | 0.07 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.09 | 0.16 | 0.09 | 0.12 | 0.04 | 0.16 | |||||
R22 black | Gr-3 | 65.6 | 2.5 | 16.1 | 0.69 | 7.9 | 0.59 | 0.50 | 0.2 | 0.94 | 0.08 | 3.3 | 0.81 | 0.24 | 0.14 | 0.19 | <0.1 | <0.1 | <0.1 | <0.1 |
S.D. | 0.19 | 0.07 | 0.02 | 0.05 | 0.04 | 0.04 | 0.06 | 0.04 | 0.02 | 0.06 | 0.07 | 0.05 | 0.17 | 0.08 | 0.15 | |||||
R-9 * | Gr-4 | 43.5 | 1.6 | 9.5 | 0.52 | 5.0 | 0.40 | 0.40 | 0.09 | 0.45 | 0.10 | 0.45 | 0.13 | 7.7 | 28.5 | 0.25 | 1.3 | <0.02 | <0.02 | <0.02 |
S.D. | 0.49 | 0.02 | 0.05 | 0.02 | 0.15 | 0.03 | 0.04 | 0.00 | 0.02 | 0.00 | 0.02 | 0.02 | 1.39 | 0.79 | 0.05 | 0.12 | ||||
R11 | Gr-4 | 41.1 | 1.2 | 9.2 | 0.23 | 2.9 | 0.39 | <0.1 | 0.10 | 0.67 | 0.17 | 0.69 | 0.05 | 11.7 | 30.4 | 0.14 | 0.84 | <0.1 | <0.1 | <0.1 |
S.D. | 1.20 | 0.09 | 0.13 | 0.05 | 0.17 | 0.03 | 0.05 | 0.05 | 0.08 | 0.10 | 0.06 | 2.73 | 1.37 | 0.12 | 0.16 | |||||
R12 | Gr-4 | 42.8 | 1.5 | 10.7 | 0.37 | 3.9 | 0.35 | <0.1 | 0.06 | 0.57 | 0.02 | 0.63 | 0.17 | 9.6 | 28 | 0.24 | 0.87 | |||
S.D. | 0.82 | 0.06 | 0.12 | 0.04 | 0.11 | 0.05 | 0.05 | 0.05 | 0.02 | 0.08 | 0.10 | 1.70 | 0.64 | 0.09 | 0.04 | |||||
AR-1 * | Gr-5 | 44.8 | 2.8 | 10.9 | 0.71 | 6.8 | 0.80 | 0.28 | 0.19 | 0.50 | 0.20 | 1.5 | 0.20 | 8.5 | 20.0 | 0.80 | <0.02 | <0.02 | <0.02 | <0.02 |
S.D. | 1.27 | 0.04 | 0.21 | 0.01 | 0.06 | 0.02 | 0.03 | 0.05 | 0.12 | 0.03 | 0.05 | 0.04 | 2.02 | 0.31 | 0.04 | |||||
AR-2 * | Gr-5 | 46.0 | 1.8 | 9.5 | 0.74 | 4.2 | 0.70 | 0.42 | 0.21 | 0.50 | 0.09 | 0.70 | 0.35 | 9.8 | 22.4 | 1.1 | 1.3 | 0.05 | 0.04 | <0.02 |
S.D. | 1.37 | 0.09 | 0.20 | 0.06 | 0.31 | 0.05 | 0.04 | 0.03 | 0.01 | 0.02 | 3.77 | 0.05 | 2.13 | 1.41 | 0.08 | 0.14 | 0.01 | 0.19 | ||
AR-4 * | Gr-5 | 50.8 | 1.9 | 13.0 | 1.2 | 6.7 | 1.3 | 0.57 | 0.40 | 0.60 | 0.18 | 1.5 | 0.27 | 11.0 | 8.0 | 1.2 | 1.2 | 0.05 | 0.07 | <0.02 |
S.D. | 1.66 | 0.12 | 0.34 | 0.07 | 0.68 | 0.05 | 0.11 | 0.04 | 0.10 | 0.04 | 0.10 | 0.08 | 2.49 | 0.39 | 0.07 | 0.14 | 0.05 | 0.16 | ||
AR8 red | Gr-5 | 45.6 | 2.3 | 10.8 | 0.80 | 7.3 | 0.61 | <0.1 | 0.23 | 0.99 | 0.21 | 1.7 | 0.25 | 7.8 | 19.4 | 1.2 | 0.33 | <0.1 | <0.1 | <0.1 |
S.D. | 0.20 | 0.09 | 0.13 | 0.06 | 0.13 | 0.06 | 0.06 | 0.06 | 0.05 | 0.08 | 0.13 | 0.08 | 0.10 | 0.15 | 0.09 | |||||
AR8 yellow | Gr-5 | 45.8 | 2.6 | 10.6 | 0.80 | 7.3 | 0.59 | <0.1 | 0.21 | 0.93 | 0.21 | 1.7 | 0.25 | 8.1 | 19.4 | 1.1 | 0.26 | <0.1 | <0.1 | <0.1 |
S.D. | 0.16 | 0.11 | 0.11 | 0.08 | 0.07 | 0.04 | 0.09 | 0.09 | 0.13 | 0.05 | 0.14 | 0.14 | 0.26 | 0.18 | 0.17 |
Group | CuO | S.D. | PbO | S.D. | Fe2O3 | S.D. | SnO2 | S.D. | Sb2O5 | S.D. |
---|---|---|---|---|---|---|---|---|---|---|
Gr-1 | 2.3 | 0.39 | 1.5 | 2.0 | 1.4 | 0.56 | 0.7 | 0.36 | 0.2 | 0.15 |
Gr-2 | 3.1 | 0.36 | 1.1 | 0.06 | 4.8 | 0.14 | 0.4 | 0.08 | 0.5 | 0.17 |
Gr-3 | 0.3 | 0.02 | 0.3 | 0.13 | 4.2 | 0.29 | 0.1 | 0.09 | 0.4 | 0.00 |
Gr-4 | 9.7 | 1.6 | 29.0 | 1.0 | 0.6 | 0.10 | 0.2 | 0.05 | 1.0 | 0.23 |
Gr-5 | 9.3 | 1.2 | 17.5 | 5.6 | 1.4 | 0.38 | 1.1 | 0.15 | 0.9 | 0.42 |
Oxide | Average | Glassy Phase | Average | Glassy Phase | Average | Glassy Phase | Average | Glassy Phase |
---|---|---|---|---|---|---|---|---|
Group | R16 (Gr-1) | R19 (Gr-2) | R12 (Gr-4) | AR4 (Gr-5) | ||||
Al2O3 | 1.4 | 1.4 | 2.1 | 2.1 | 1.5 | 1.6 | 1.9 | 1.7 |
S.D. | 0.09 | 0.06 | 0.05 | 0.05 | 0.06 | 0.03 | 0.12 | 0.07 |
Na2O | 13.6 | 13.6 | 17.0 | 17.0 | 10.7 | 10.8 | 13.0 | 14.3 |
S.D | 0.24 | 0.12 | 0.06 | 0.07 | 0.12 | 0.05 | 0.34 | 0.49 |
K2O | 3.4 | 3.4 | 0.73 | 0.72 | 0.37 | 0.33 | 1.2 | 1.1 |
S.D | 0.09 | 0.03 | 0.02 | 0.02 | 0.04 | 0.03 | 0.07 | 0.02 |
P2O5 | 1.0 | 1.1 | 0.13 | 0.20 | 0.06 | 0.10 | 0.40 | 0.32 |
S.D | 0.08 | 0.07 | 0.06 | 0.05 | 0.05 | 0.05 | 0.04 | 0.02 |
Fe2O3 | 1.2 | 1.2 | 5.0 | 4.9 | 0.63 | 0.67 | 1.5 | 1.7 |
S.D | 0.09 | 0.11 | 0.08 | 0.09 | 0.08 | 0.10 | 0.10 | 0.01 |
MnO | 0.30 | 0.33 | 0.40 | 0.40 | 0.17 | 0.30 | 0.27 | 0.35 |
S.D | 0.08 | 0.12 | 0.07 | 0.07 | 0.10 | 0.09 | 0.08 | 0.07 |
CuO | 2.8 | 2.6 | 3.3 | 2.8 | 9.6 | 6.2 | 11.0 | 6.7 |
S.D | 0.32 | 0.10 | 0.27 | 0.13 | 0.64 | 0.19 | 0.39 | 0.35 |
PbO | 0.67 | 0.82 | 1.1 | 1.2 | 28.0 | 29.2 | 7.8 | 8.5 |
S.D | 0.09 | 0.07 | 0.07 | 0.06 | 0.64 | 0.23 | 0.39 | 0.12 |
SnO2 | 0.51 | 0.47 | 0.46 | 0.46 | 0.24 | 0.14 | 1.2 | 1.2 |
S.D | 0.13 | 0.17 | 0.09 | 0.11 | 0.09 | 0.09 | 0.07 | 0.08 |
Group | Sub-Group | Colour-Hues | FEG-SEM (Particles) | Raman (Particles) | XRD | ||||
---|---|---|---|---|---|---|---|---|---|
Colouring (μm) | Devitrification | Others | Metallic (μm) | Colouring | Others | ||||
Gr-1 | - | Brick red | Cu° 0.04-0.7 | W; Dt; Dp. | Pol. (R3-R14); CP (R6-R26); | Mgm (R6-R8);C (R26); Inc.A (R16); Inc.B (R8) | - | Inc.C (R26) | Cu° |
Gr-2 | - | Reddish brown | Cu° > 1 | - | Inc.C (R10); Pol. (R17) | C (R17) | - | - | Cu° |
Gr-3 | Average | Dark red | - | - | |||||
Gr-3cBK | Black layer | W; Dt. | - | C (0.1); hem. | - | - | |||
Gr-3cR | Red layer | Cu° 0.02-0.1 | W; Dt. | - | C (0.1) | - | - | ||
Gr-4 | - | Sealing wax | Cu° (R9-R11) | Cu2O | |||||
Gr-5 | Gr-5dOr | Yellowish orange | Cu2O (0.1-0.3); | W; Dt (AR1) | CA | Cu2O | CA (AR2) | Cu2O | |
Gr-5dR | Reddish orange | AR4: Cu2O 0.3-1 | W; Dt (AR4) | Cu2O | Cu2O |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandiera, M.; Verità, M.; Lehuédé, P.; Vilarigues, M. The Technology of Copper-Based Red Glass Sectilia from the 2nd Century AD Lucius Verus Villa in Rome. Minerals 2020, 10, 875. https://doi.org/10.3390/min10100875
Bandiera M, Verità M, Lehuédé P, Vilarigues M. The Technology of Copper-Based Red Glass Sectilia from the 2nd Century AD Lucius Verus Villa in Rome. Minerals. 2020; 10(10):875. https://doi.org/10.3390/min10100875
Chicago/Turabian StyleBandiera, Mario, Marco Verità, Patrice Lehuédé, and Marcia Vilarigues. 2020. "The Technology of Copper-Based Red Glass Sectilia from the 2nd Century AD Lucius Verus Villa in Rome" Minerals 10, no. 10: 875. https://doi.org/10.3390/min10100875
APA StyleBandiera, M., Verità, M., Lehuédé, P., & Vilarigues, M. (2020). The Technology of Copper-Based Red Glass Sectilia from the 2nd Century AD Lucius Verus Villa in Rome. Minerals, 10(10), 875. https://doi.org/10.3390/min10100875