Mineralogy and Geochemistry of Listvenite-Hosted Ni–Fe Sulfide Paragenesis—A Case Study from Janjevo and Melenica Listvenite Occurrences (Kosovo)
Abstract
:1. Introduction
2. Geological Setting
3. Investigated Materials
4. Methods
5. Results
5.1. Janjevo Listvenite
5.2. Melenica Listvenite
6. Discussion
6.1. The Listvenite Paragenetic Sequence
6.2. Phase Transitions of Ni–Co–Fe Sulfides in Individual Stages
7. Conclusions
- The products of the first magmatic stage are represented by millerite ± pentlandite ± pyrrhotite. They occur only as remnants (pentlandite, millerite) or are completely recrystallized (pyrrhotite to pyrite),
- The sulfide mineralization associated with proper listvenitization is represented by Ni–Co bearing pyrite (Ni content up to 11.57 wt.% [0.24 apfu], and Co content up to 6.54 wt.% [0.14 apfu]), as well as diversified Ni–Fe–Co thiospinels: violarite + siegenite ± polydymite.
- Thiospinels are associated with older millerite, pentlandite, or pyrite I. Three types of thiospinels associations are observed: (I) violarite replacement after pentlandite; (II) violarite association with pyrite I with any magmatic millerite/pentlandite; and (III) siegenite replacement after millerite.
- Violarite occurs in two groups: Co-enriched violarite may be of hypogene origin, while Co-free violarite may have formed through supergene processes.
- Talc-magnesite rich soapstone is characterized by the presence of isolated millerite with no thiospinels.
- The listvenitization stage is accompanied by the crystallization of quartz, talc, and Mg–Fe–Ca carbonates (magnesite and dolomite).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, L.D.; Dipple, G.M.; Gordon, T.M.; Kellett, D.A. Carbonated Serpentinite (Listwanite) at Atlin, British Columbia: A Geological Analogue to Carbon Dioxide Sequestration. Can. Mineral. 2005, 43, 225–239. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Matter, J.; Streit, E.E.; Rudge, J.F.; Curry, W.B.; Blusztajn, J. Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in Situ CO2 Capture and Storage. Annu. Rev. Earth Planet. Sci. 2011, 39, 545–576. [Google Scholar] [CrossRef]
- Beinlich, A.; Plümper, O.; Hövelmann, J.; Austrheim, H.; Jamtveit, B. Massive Serpentinite Carbonation at Linnajavri, N–Norway. Terra Nova 2012, 24, 446–455. [Google Scholar] [CrossRef]
- Kelemen, P.; Benson, S.M.; Pilorgé, H.; Psarras, P.; Wilcox, J. An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Front. Clim. 2019, 1, 482595. [Google Scholar] [CrossRef]
- Beinlich, A.; Plümper, O.; Boter, E.; Müller, I.A.; Kourim, F.; Ziegler, M.; Harigane, Y.; Lafay, R.; Kelemen, P.B.; the Oman Drilling Project Science Team. Ultramafic Rock Carbonation: Constraints From Listvenite Core BT1B, Oman Drilling Project. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019060. [Google Scholar] [CrossRef]
- Menzel, M.; Sieber, M.; Godard, M. From Peridotite to Listvenite—Perspectives on the Processes, Mechanisms and Settings of Ultramafic Mineral Carbonation to Quartz-Magnesite Rocks. Earth Sci. Rev. 2024, 255, 104828. [Google Scholar] [CrossRef]
- Halls, C.; Zhao, R. Listvenite and Related Rocks: Perspectives on Terminology and Mineralogy with Reference to an Occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Miner. Deposita 1995, 30, 303–313. [Google Scholar] [CrossRef]
- Zoheir, B.; Lehmann, B. Listvenite–Lode Association at the Barramiya Gold Mine, Eastern Desert, Egypt. Ore Geol. Rev. 2011, 39, 101–115. [Google Scholar] [CrossRef]
- Radosavljević, S.A.; Stojanović, J.N.; Vuković, N.S.; Radosavljević-Mihajlović, A.S.; Kašić, V.D. Low-Temperature Ni-As-Sb-S Mineralization of the Pb(Ag)-Zn Deposits within the Rogozna Ore Field, Serbo-Macedonian Metallogenic Province: Ore Mineralogy, Crystal Chemistry and Paragenetic Relationships. Ore Geol. Rev. 2015, 65, 213–227. [Google Scholar] [CrossRef]
- Qiu, T.; Zhu, Y. Geology and Geochemistry of Listwaenite-Related Gold Mineralization in the Sayi Gold Deposit, Xinjiang, NW China. Ore Geol. Rev. 2015, 70, 61–79. [Google Scholar] [CrossRef]
- Boskabadi, A.; Pitcairn, I.K.; Broman, C.; Boyce, A.; Teagle, D.A.H.; Cooper, M.J.; Azer, M.K.; Stern, R.J.; Mohamed, F.H.; Majka, J. Carbonate Alteration of Ophiolitic Rocks in the Arabian–Nubian Shield of Egypt: Sources and Compositions of the Carbonating Fluid and Implications for the Formation of Au Deposits. Int. Geol. Rev. 2017, 59, 391–419. [Google Scholar] [CrossRef]
- Gahlan, H.A.; Azer, M.K.; Asimow, P.D.; Al-Kahtany, K.M. Petrogenesis of Gold-Bearing Listvenites from the Carbonatized Mantle Section of the Neoproterozoic Ess Ophiolite, Western Arabian Shield, Saudi Arabia. Lithos 2020, 372–373, 105679. [Google Scholar] [CrossRef]
- Mederski, S.; Wojsław, M.; Pršek, J.; Majzlan, J.; Kiefer, S.; Asllani, B. A Geochemical Study of Gersdorffite from the Trepça Mineral Belt, Vardar Zone, Kosovo. J. Geosci. 2021, 66, 97–115. [Google Scholar] [CrossRef]
- Sarifakioglu, E. Geochemistry and Origin of Listwaenites within the Northern Branch of Neo-Tethyan Ophiolites, Turkey. J. Afr. Earth Sci. 2023, 197, 104748. [Google Scholar] [CrossRef]
- Mederski, S.; Pršek, J.; Dimitrova, D. Distribution of In, Sn, Ga, Ge, and Other Critical Metals in Sulfide Ores from Epithermal Listvenite-Associated Badovc Pb–Zn–Sb–Ni Deposit (Kosovo): Insights from Mineralogy and Geochemistry. Ore Geol. Rev. 2024, 164, 105824. [Google Scholar] [CrossRef]
- Nasir, S.; Al Sayigh, A.R.; Al Harthy, A.; Al-Khirbash, S.; Al-Jaaidi, O.; Musllam, A.; Al-Mishwat, A.; Al-Bu’saidi, S. Mineralogical and Geochemical Characterization of Listwaenite from the Semail Ophiolite, Oman. Geochemistry 2007, 67, 213–228. [Google Scholar] [CrossRef]
- Hinsken, T.; Bröcker, M.; Strauss, H.; Bulle, F. Geochemical, Isotopic and Geochronological Characterization of Listvenite from the Upper Unit on Tinos, Cyclades, Greece. Lithos 2017, 282–283, 281–297. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, K.-J.; Yan, L.-L. Hydrothermal Metasomatism and Solid-Phase Transfer in Petrogenesis of Listvenite: The Meso-Tethyan Ophiolite, Central Tibet, China. Contrib. Mineral. Petrol. 2022, 178, 4. [Google Scholar] [CrossRef]
- Sideridis, A.; Koutsovitis, P.; Tsikouras, B.; Karkalis, C.; Hauzenberger, C.; Zaccarini, F.; Tsitsanis, P.; Lazaratou, C.V.; Skliros, V.; Panagiotaras, D.; et al. Pervasive Listwaenitization: The Role of Subducted Sediments within Mantle Wedge, W. Chalkidiki Ophiolites, N. Greece. Minerals 2022, 12, 1000. [Google Scholar] [CrossRef]
- Qiu, T.; Zhu, Y. Chromian Spinels in Highly Altered Ultramafic Rocks from the Sartohay Ophiolitic Mélange, Xinjiang, NW China. J. Asian Earth Sci. 2018, 159, 155–184. [Google Scholar] [CrossRef]
- Lizoń, K.; Tomczak, A.; Mederski, S.; Pršek, J.; Asllani, B. Geochemical Study of Accessory Chromian Spinels from Listvenites from the Trepça Mineral Belt, Vardar Zone, Kosovo. In Proceedings of the Critical Role of Minerals in the Carbon-Neutral Future 16th Biennial SGA Meeting, Rotorua, New Zealand, 28–31 March 2022; Volume 1, pp. 196–199. [Google Scholar]
- Frost, B.R. On the Stability of Sulfides, Oxides, and Native Metals in Serpentinite. J. Petrol. 1985, 26, 31–63. [Google Scholar] [CrossRef]
- Klein, F.; Garrido, C.J. Thermodynamic Constraints on Mineral Carbonation of Serpentinized Peridotite. Lithos 2011, 126, 147–160. [Google Scholar] [CrossRef]
- Menzel, M.D.; Garrido, C.J.; López Sánchez-Vizcaíno, V.; Marchesi, C.; Hidas, K.; Escayola, M.P.; Delgado Huertas, A. Carbonation of Mantle Peridotite by CO2-Rich Fluids: The Formation of Listvenites in the Advocate Ophiolite Complex (Newfoundland, Canada). Lithos 2018, 323, 238–261. [Google Scholar] [CrossRef]
- Tsikouras, B.; Karipi, S.; Grammatikopoulos, T.A.; Hatzipanagiotou, K. Listwaenite Evolution in the Ophiolite Melange of Iti Mountain (Continental Central Greece). Eur. J. Mineral. 2006, 18, 243–255. [Google Scholar] [CrossRef]
- Menzel, M.D.; Urai, J.L.; Ukar, E.; Decrausaz, T.; Godard, M. Progressive Veining during Peridotite Carbonation: Insights from Listvenites in Hole BT1B, Samail Ophiolite (Oman). Solid Earth 2022, 13, 1191–1218. [Google Scholar] [CrossRef]
- Falk, E.S.; Kelemen, P.B. Geochemistry and Petrology of Listvenite in the Samail Ophiolite, Sultanate of Oman: Complete Carbonation of Peridotite during Ophiolite Emplacement. Geochim. Cosmochim. Acta 2015, 160, 70–90. [Google Scholar] [CrossRef]
- Sieber, M.J.; Hermann, J.; Yaxley, G.M. An Experimental Investigation of C–O–H Fluid-Driven Carbonation of Serpentinites under Forearc Conditions. Earth Planet. Sci. Lett. 2018, 496, 178–188. [Google Scholar] [CrossRef]
- Sieber, M.J.; Yaxley, G.M.; Hermann, J. Investigation of Fluid-Driven Carbonation of a Hydrated, Forearc Mantle Wedge Using Serpentinite Cores in High-Pressure Experiments. J. Petrol. 2020, 61, egaa035. [Google Scholar] [CrossRef]
- Ferenc, Š.; Uher, P.; Spišiak, J.; Šimonová, V. Chromium- and Nickel-Rich Micas and Associated Minerals in Listvenite from the Muránska Zdychava, Slovakia: Products of Hydrothermal Metasomatic Transformation of Ultrabasic Rock. J. Geosci. 2016, 61, 239–254. [Google Scholar] [CrossRef]
- Kiefer, S.; Ivan, P.; Kaufmann, A.B.; Vďačný, M.; Majzlan, J. Remobilization of Ni–Co–As and Platinum-Group Elements by Carbonate Metasomatic Alteration (Listvenitization) of Metaultramafic Rocks from Dobšiná, Slovakia. Geol. Carpath. 2023, 74, 139–153. [Google Scholar] [CrossRef]
- Borojević Šoštarić, S.; Palinkaš, L.A.; Topa, D.; Spangenberg, J.E.; Prochaska, W. Silver–Base Metal Epithermal Vein and Listwaenite Types of Deposit Crnac, Rogozna Mts., Kosovo. Part I: Ore Mineral Geochemistry and Sulfur Isotope Study. Ore Geol. Rev. 2011, 40, 65–80. [Google Scholar] [CrossRef]
- Borojević Šoštarić, S.; Palinkaš, L.A.; Neubauer, F.; Hurai, V.; Cvetković, V.; Roller-Lutz, Z.; Mandić, M.; Genser, J. Silver-Base Metal Epithermal Vein and Listwanite Hosted Deposit Crnac, Rogozna Mts., Kosovo, Part II: A Link between Magmatic Rocks and Epithermal Mineralization. Ore Geol. Rev. 2013, 50, 98–117. [Google Scholar] [CrossRef]
- Boskabadi, A.; Pitcairn, I.K.; Leybourne, M.I.; Teagle, D.A.H.; Cooper, M.J.; Hadizadeh, H.; Nasiri Bezenjani, R.; Monazzami Bagherzadeh, R. Carbonation of Ophiolitic Ultramafic Rocks: Listvenite Formation in the Late Cretaceous Ophiolites of Eastern Iran. Lithos 2020, 352–353, 105307. [Google Scholar] [CrossRef]
- Janković, S. The Carpatho-Balkanides and Adjacent Area: A Sector of the Tethyan Eurasian Metallogenic Belt. Miner. Deposita 1997, 32, 426–433. [Google Scholar] [CrossRef]
- Borojević Šoštarić, S.; Cvetković, V.; Neubauer, F.; Palinkaš, L.A.; Bernroider, M.; Genser, J. Oligocene Shoshonitic Rocks of the Rogozna Mts. (Central Balkan Peninsula): Evidence of Petrogenetic Links to the Formation of Pb–Zn–Ag Ore Deposits. Lithos 2012, 148, 176–195. [Google Scholar] [CrossRef]
- Kołodziejczyk, J.; Pršek, J.; Voudouris, P.C.; Melfos, V.; Asllani, B. Sn-Bearing Minerals and Associated Sphalerite from Lead-Zinc Deposits, Kosovo: An Electron Microprobe and LA-ICP-MS Study. Minerals 2016, 6, 42. [Google Scholar] [CrossRef]
- Dimitrijević, M.D. Dinarides and the Vardar Zone: A Short Review of the Geology. Acta Vulcanol. 2001, 12, 1000–1008. [Google Scholar]
- Robertson, A.H.F.; Trivić, B.; Đerić, N.; Bucur, I.I. Tectonic Development of the Vardar Ocean and Its Margins: Evidence from the Republic of Macedonia and Greek Macedonia. Tectonophysics 2013, 595–596, 25–54. [Google Scholar] [CrossRef]
- Janković, S. The principal metallogenetic features of the Kopaonik District. In Proceedings of the International Symposium “Geology and Metallogeny of the Dinarides and the Vardar Zone”; Academy of Science and Art of Republika Srpska: Rotterdam, The Netherlands; Banja Luka, Bosnia and Herzegovina; 1995, Volume 1, pp. 79–101.
- Cvetković, V.; Prelević, D.; Downes, H.; Jovanović, M.; Vaselli, O.; Pécskay, Z. Origin and Geodynamic Significance of Tertiary Postcollisional Basaltic Magmatism in Serbia (Central Balkan Peninsula). Lithos 2004, 73, 161–186. [Google Scholar] [CrossRef]
- Elezaj, Z. Geodynamic Evolution of Kosovo during the Triassic and Jurassic. Yerbilimleri 2009, 30, 113–126. [Google Scholar]
- Strmić Palinkaš, S.; Palinkaš, L.A.; Renac, C.; Spangenberg, J.E.; Lüders, V.; Molnar, F.; Maliqi, G. Metallogenic Model of the Trepča Pb-Zn-Ag Skarn Deposit, Kosovo: Evidence from Fluid Inclusions, Rare Earth Elements, and Stable Isotope Data. Econ. Geol. 2013, 108, 135–162. [Google Scholar] [CrossRef]
- Hyseni, S.; Durmishaj, B.; Fetahaj, B.; Shala, F.; Berisha, A.; Large, D. Trepça Ore Belt and Stan Terg Mine—Geological Overview and Interpretation, Kosovo (SE Europe). Geologija 2010, 53, 87–92. [Google Scholar] [CrossRef]
- Kołodziejczyk, J.; Pršek, J.; Melfos, V.; Voudouris, P.C.; Maliqi, F.; Kozub-Budzyń, G. Bismuth Minerals from the Stan Terg Deposit (Trepça, Kosovo). Neues Jahrb. Für Mineral. Abhandlungen 2015, 192, 317–333. [Google Scholar] [CrossRef]
- Kołodziejczyk, J.; Pršek, J.; Asllani, B.; Maliqi, F. The Paragenesis of Silver Minerals in the Pb-Zn Stan Terg Deposit, Kosovo—An Example of Precious Metal Epithermal Mineralization. Geol. Geophys. Environ. 2016, 42, 19–29. [Google Scholar] [CrossRef]
- Strmić Palinkaš, S.; Peltekovski, Z.; Tasev, G.; Serafimovski, T.; Šmajgl, D.; Rajič, K.; Spangenberg, J.E.; Neufeld, K.; Palinkaš, L. The Role of Magmatic and Hydrothermal Fluids in the Formation of the Sasa Pb-Zn-Ag Skarn Deposit, Republic of Macedonia. Geosciences 2018, 8, 444. [Google Scholar] [CrossRef]
- Serafimovski, T. The Lece-Chalkidiki Metallogenic Zone: Geotectonic Setting and Metallogenic Features. Geologija 1999, 42, 159–163. [Google Scholar] [CrossRef]
- Velojić, M.; Prelević, D.; Jelenković, R. The Origin of Lead and Sulphur in Tulare Ore Field, Lece Magmatic Complex, SE Serbia. Geol. An. Balk. Poluos. 2018, 79, 19–28. [Google Scholar] [CrossRef]
- Kroll, T.; Müller, D.; Seifert, T.; Herzig, P.; Schneider, A. Petrology and Geochemistry of the Shoshonite-Hosted Skouries Porphyry Cu-Au Deposit, Chalkidiki, Greece. Miner. Deposita 2002, 37, 137–144. [Google Scholar] [CrossRef]
- Baker, T. Gold ± Copper Endowment and Deposit Diversity in the Western Tethyan Magmatic Belt, Southeast Europe: Implications for Exploration. Econ. Geol. 2019, 114, 1237–1250. [Google Scholar] [CrossRef]
- Serafimovski, T.; Stefanova, V.; Volkov, A.V. Dwarf Copper-Gold Porphyry Deposits of the Buchim-Damjan-Borov Dol Ore District, Republic of Macedonia (FYROM). Geol. Ore Depos. 2010, 52, 179–195. [Google Scholar] [CrossRef]
- Strmić Palinkaš, S.; Perković, I.; Čobić, A.; Jurković, I.; Tasev, G.; Serafimovski, T.; Spangenberg, J.E. Evolution of Ore-Forming Fluids in a Post-Collisional Porphyry Cu-Au System: A Case Study from the Bučim Deposit, Republic of North Macedonia. Ore Geol. Rev. 2022, 146, 104913. [Google Scholar] [CrossRef]
- Stergiou, C.L.; Melfos, V.; Voudouris, P.; Spry, P.G.; Papadopoulou, L.; Chatzipetros, A.; Giouri, K.; Mavrogonatos, C.; Filippidis, A. The Geology, Geochemistry, and Origin of the Porphyry Cu-Au-(Mo) System at Vathi, Serbo-Macedonian Massif, Greece. Appl. Sci. 2021, 11, 479. [Google Scholar] [CrossRef]
- Stergiou, C.L.; Melfos, V.; Voudouris, P.; Papadopoulou, L.; Spry, P.G.; Peytcheva, I.; Dimitrova, D.; Stefanova, E.; Giouri, K. Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece. Minerals 2021, 11, 630. [Google Scholar] [CrossRef]
- Siron, C.R.; Thompson, J.F.H.; Baker, T.; Friedman, R.; Tsitsanis, P.; Russell, S.; Randall, S.; Mortensen, J. Magmatic and Metallogenic Framework of Au-Cu Porphyry and Polymetallic Carbonate-Hosted Replacement Deposits of the Kassandra Mining District, Northern Greece. SEG Spec. Publ. 2016, 19, 29–55. [Google Scholar] [CrossRef]
- Siron, C.R.; Thompson, J.F.H.; Baker, T.; Darling, R.; Dipple, G. Origin of Au-Rich Carbonate-Hosted Replacement Deposits of the Kassandra Mining District, Northern Greece: Evidence for Late Oligocene, Structurally Controlled, and Zoned Hydrothermal Systems. Econ. Geol. 2019, 114, 1389–1414. [Google Scholar] [CrossRef]
- Stefanova, V.; Volkov, A.V.; Serafimovskii, T.; Sidorov, A.A. Native Gold from the Plavica Epithermal Deposit, Republic of Macedonia. Dokl. Earth Sc. 2013, 451, 818–823. [Google Scholar] [CrossRef]
- Melfos, V.; Voudouris, P.; Serafimovski, T.; Tasev, G. Fluid Inclusions at the Plavica Au-Ag-Cu Telescoped Porphyry–Epithermal System, Former Yugoslavian Republic of Macedonia (FYROM). Geosciences 2019, 9, 88. [Google Scholar] [CrossRef]
- Mederski, S. Characteristics of the Hydrothermal Base-Metal Mineralization of the Kizhnica Ore Field, Kosovo: Mineralogy, Geochemistry and Genesis. Ph.D. Thesis, AGH University of Science and Technology, Krakow, Poland, 2023. [Google Scholar]
- Tasev, G.; Serafimovski, T. Fluid Inclusions Study in the Quartz from the Zletovo Mine. Geol. Maced. 2012, 2, 83–90. [Google Scholar]
- Radosavljević, S.A.; Stojanović, J.N.; Radosavljević-Mihajlović, A.S.; Vuković, N.S. (Pb–Sb)-Bearing Sphalerite from the Čumavići Polymetallic Ore Deposit, Podrinje Metallogenic District, East Bosnia and Herzegovina. Ore Geol. Rev. 2016, 72, 253–268. [Google Scholar] [CrossRef]
- Radosavljević, S.A.; Dimitrijević, R.Z. Mineralogical Data and Paragenetic Association for Semseyite from Srebrenica Orefield, Bosnia and Herzegovina. Neues Jahrb. Mineral., Monatsh. 2001, 4, 145–156. [Google Scholar]
- Radosavljević, S.A.; Rakic, S.M.; Stojanovic, J.N.; Radosavljevic-Mihajlovic, A.S. Occurrence of Petrukite in Srebrenica Orefield, Bosnia and Herzegovina. Neues Jahrb. Für Mineral. Abhandlungen 2005, 181, 21–26. [Google Scholar] [CrossRef]
- Kluza, K.; Pršek, J.; Mederski, S.; Dolníček, Z.; Sejkora, J. Zinc Incorporation into Carbonate Minerals from the Selac Area, Kosovo. In Proceedings of the Mineral Resources in a Changing World 17th Biennial SGA Meeting, Zurich, Switzerland, 28 August–1 September 2023; Volume 2, pp. 377–380. [Google Scholar]
- Mederski, S.; Pršek, J.; Dimitrova, D.; Hyseni, B. A Combined EPMA and LA-ICP-MS Investigation on Bi-Cu-Au Mineralization from the Kizhnica Ore Field (Vardar Zone, Kosovo). Minerals 2021, 11, 1223. [Google Scholar] [CrossRef]
- Westner, K. Roman Mining and Metal Production near the Antique City of Ulpiana (Kosovo). Ph.D. Thesis, Goethe-Universität, Frankfurt, Germany, 2017. [Google Scholar]
- Mederski, S.; Pršek, J.; Kołodziejczyk, J.; Kluza, K.; Melfos, V.; Adamek, K.; Dimitrova, D. Mineralogical and Geochemical Studies of Cu-Bi-Ag±W Ores from Janjevo (Kosovo): Insights into the Bi Sulfosalt Mineralogy and the Distribution of Bismuth in Base Metal Sulfides. J. Geosci. 2023, 68, 139–162. [Google Scholar] [CrossRef]
- Dangić, A. Minor Element Distribution between Galena and Sphalerite as a Geothermometer—Application to Two Lead-Zinc Areas in Yugoslavia. Econ. Geol. 1985, 80, 180–183. [Google Scholar] [CrossRef]
- Durmishaj, B.; Hyseni, S.; Tashko, A. The Main Geochemical Association of the Sulfides of Lead-Zinc Mineralization in Trepça Mineral Belt-Hajvalia Mine, Kosovo. ARPN J. Eng. Appl. Sci 2014, 9, 1376–1380. [Google Scholar]
- Mederski, S.; Pršek, J.; Hincyngier, K. Pb-Zn-Sb-Ni-Au Mineralization from the Kizhnica Area, Central Kosovo: New Data on the Listwaenite Type Mineralization. In Proceedings of the Life with Ore Deposits on Earth: 15th Biennial SGA Meeting, University of Glasgow Publicity Services, Glasgow, UK, 27–30 August 2019; Volume 2, pp. 834–837. [Google Scholar]
- Mederski, S.; Pršek, J.; Majzlan, J.; Kiefer, S.; Dimitrova, D.; Milovský, R.; Bender Koch, C.; Kozień, D. Geochemistry and Textural Evolution of As-Tl-Sb-Hg-Rich Pyrite from a Sediment-Hosted As-Sb-Tl-Pb±Hg±Au Mineralization in Janjevo, Kosovo. Ore Geol. Rev. 2022, 151, 105221. [Google Scholar] [CrossRef]
- Mederski, S.; Pršek, J.; Dimitrova, D. Trace Elements in Sphalerite from the Kizhnica-Hajvalia-Badovc Ore Field, Kosovo: An Example of In-Bearing Sphalerite. In Proceedings of the Critical Role of Minerals in the Carbon-Neutral Future 16th Biennial SGA Meeting, Rotorua, New Zealand, 28–31 March 2022; Volume 1, pp. 239–242. [Google Scholar]
- Mederski, S.; Pršek, J.; Kluza, K.; Dimitrova, D. LA-ICP-MS Trace Element Composition of Stibnite from the Kizhnica-Hajvalia-Badovc Ore Field, Kosovo. In Proceedings of the Mineral Resources in a Changing World 17th Biennial SGA Meeting, Zurich, Switzerland, 28 August–1 September 2023; Volume 3, pp. 296–299. [Google Scholar]
- Węgrzynowicz, J.; Pršek, J.; Mederski, S.; Asllani, B.; Kanigowski, J. Pb-Bi(-Cu) and Pb-Sb Sulfosalts from Stan Terg Area, Kosovo. In Proceedings of the Life with Ore Deposits on Earth: 15th Biennial SGA Meeting, University of Glasgow Publicity Services, Glasgow, UK, 27–30 August 2019; Volume 1, pp. 380–383. [Google Scholar]
- Grguric, B.A. Hypogene Violarite of Exsolution Origin from Mount Keith, Western Australia: Field Evidence for a Stable Pentlandite–Violarite Tie Line. Mineral. Mag. 2002, 66, 313–326. [Google Scholar] [CrossRef]
- Taylor, P.; Rummery, T.E.; Owen, D.G. Reactions of Iron Monosulfide Solids with Aqueous Hydrogen Sulfide up to 160 °C. J. Inorg. Nucl. Chem. 1979, 41, 1683–1687. [Google Scholar] [CrossRef]
- Taylor, P.; Rummery, T.E.; Owen, D.G. On the Conversion of Mackinawite to Greigite. J. Inorg. Nucl. Chem. 1979, 41, 595–596. [Google Scholar] [CrossRef]
- Schoonen, M.A.A.; Barnes, H.L. Mechanisms of Pyrite and Marcasite Formation from Solution: III. Hydrothermal Processes. Geochim. Cosmochim. Acta 1991, 55, 3491–3504. [Google Scholar] [CrossRef]
- Qian, G.; Xia, F.; Brugger, J.; Skinner, W.M.; Bei, J.; Chen, G.; Pring, A. Replacement of Pyrrhotite by Pyrite and Marcasite under Hydrothermal Conditions up to 220 °C: An Experimental Study of Reaction Textures and Mechanisms. Am. Mineral. 2011, 96, 1878–1893. [Google Scholar] [CrossRef]
- Murowchick, J.B. Marcasite Inversion and the Petrographic Determination of Pyrite Ancestry. Econ. Geol. 1992, 87, 1141–1152. [Google Scholar] [CrossRef]
- Kitakaze, A.; Machida, T.; Komatsu, R. Phase Relations in the Fe–Ni–s System from 875 to 650 °C. Can. Mineral. 2016, 54, 1175–1186. [Google Scholar] [CrossRef]
- Mansur, E.T.; Barnes, S.-J.; Duran, C.J. Textural and Compositional Evidence for the Formation of Pentlandite via Peritectic Reaction: Implications for the Distribution of Highly Siderophile Elements. Geology 2019, 47, 351–354. [Google Scholar] [CrossRef]
- Barnes, S.J.; Taranovic, V.; Schoneveld, L.E.; Mansur, E.T.; Le Vaillant, M.; Dare, S.; Staude, S.; Evans, N.J.; Blanks, D. The Occurrence and Origin of Pentlandite-Chalcopyrite-Pyrrhotite Loop Textures in Magmatic Ni-Cu Sulfide Ores. Econ. Geol. 2020, 115, 1777–1798. [Google Scholar] [CrossRef]
- Keays, R.R.; Jowitt, S.M. The Avebury Ni Deposit, Tasmania: A Case Study of an Unconventional Nickel Deposit. Ore Geol. Rev. 2013, 52, 4–17. [Google Scholar] [CrossRef]
- Garcia, V.B.; Emilia Schutesky, M.; Oliveira, C.G.; Whitehouse, M.J.; Huhn, S.R.B.; Augustin, C.T. The Neoarchean GT-34 Ni Deposit, Carajás Mineral Province, Brazil: An Atypical IOCG-Related Ni Sulfide Mineralization. Ore Geol. Rev. 2020, 127, 103773. [Google Scholar] [CrossRef]
- Staude, S.; Scharrer, M.; Markl, G.; Simon, I.; Pfaff, K.; Monecke, T.; Blanc, P. Hydrothermal Pentlandite (Ni,Fe)9S8 from Kambalda, Western Australia: Occurrences, Formation Conditions, and Association with Orogenic Gold. Can. J. Mineral. Petrol. 2023, 61, 239–271. [Google Scholar] [CrossRef]
- Bath, A.B.; Walshe, J.L.; Cloutier, J.; Verrall, M.; Cleverley, J.S.; Pownceby, M.I.; Macrae, C.M.; Wilson, N.C.; Tunjic, J.; Nortje, G.S.; et al. Biotite and Apatite as Tools for Tracking Pathways of Oxidized Fluids in the Archean East Repulse Gold Deposit, Australia. Econ. Geol. 2013, 108, 667–690. [Google Scholar] [CrossRef]
- Durazzo, A.; Taylor, L.A. Exsolution in the Mss-Pentlandite System: Textural and Genetic Implications for Ni-Sulfide Ores. Miner. Deposita 1982, 17, 313–332. [Google Scholar] [CrossRef]
- Piña, R.; Gervilla, F.; Barnes, S.-J.; Ortega, L.; Lunar, R. Distribution of Platinum-Group and Chalcophile Elements in the Aguablanca Ni–Cu Sulfide Deposit (SW Spain): Evidence from a LA-ICP-MS Study. Chem. Geol. 2012, 302–303, 61–75. [Google Scholar] [CrossRef]
- Rödsjö, L.; Goodgame, V.R. Alteration of the Mt. Keith Nickel Sulphide Deposit. In Mineral Deposits: Processes to Processing; A. A. Balkema: Rotterdam, The Netherlands, 1999; pp. 779–782. [Google Scholar]
- Grguric, B.A.; Madsen, I.C.; Pring, A. Woodallite, a New Chromium Analogue of Iowaite from the Mount Keith Nickel Deposit, Western Australia. Mineral. Mag. 2001, 65, 427–435. [Google Scholar] [CrossRef]
- Bónová, K.; Spišiak, J.; Bóna, J.; Kováčik, M. Chromian Spinels from the Magura Unit (Western Carpathians, Eastern Slovakia)—Their Petrogenetic and Palaeogeographic Implications. Geol. Q. 2016, 6, 3–17. [Google Scholar] [CrossRef]
- Hajjar, Z.; Ares, G.; Fanlo, I.; Gervilla, F.; González-Jiménez, J.M. Cr-Spinel Tracks Genesis of Co-Fe Ores by Serpentinite Replacement at Bou Azzer, Morocco. J. Afr. Earth Sci. 2022, 188, 104471. [Google Scholar] [CrossRef]
- Nickel, E.H. Violarite—A Key Mineral in the Supergene Alteration of Nickel Sulphide Ores; Perth Conference; Australasian Institute of Mining and Metallurgy: Parkville, VIC, Australia, 1973; pp. 111–116. [Google Scholar]
- Nickel, E.H.; Ross, J.R.; Thornber, M.R. The Supergene Alteration of Pyrrhotite-Pentlandite Ore at Kambalda, Western Australia. Econ. Geol. 1974, 69, 93–107. [Google Scholar] [CrossRef]
- Misra, K.C.; Fleet, M.E. Chemical Composition and Stability of Violarite. Econ. Geol. 1974, 69, 391–403. [Google Scholar] [CrossRef]
- Tenailleau, C.; Pring, A.; Etschmann, B.; Brugger, J.; Grguric, B.; Putnis, A. Transformation of Pentlandite to Violarite under Mild Hydrothermal Conditions. Am. Mineral. 2006, 91, 706–709. [Google Scholar] [CrossRef]
- Hudson, D.R.; Groves, D.I. The Composition of Violarite Coexisting with Vaesite, Pyrite, and Millerite. Econ. Geol. 1974, 69, 1335–1340. [Google Scholar] [CrossRef]
- Barnes, S.J.; Hill, R.E.T. Metamorphism of Komatiite Hosted Nickel Sulfide Deposits. In Metamorphosed and Metamorphogenic Ore Deposits; Spry, P.G., Marshall, B., Vokes, F.M., Eds.; Reviews in Economic Geology, 11; Society of Economic Geologists: Boulder, CO, USA, 2000; pp. 203–216. [Google Scholar]
- Petruk, W.; Harris, D.C.; Stewart, J.M. Langisite, a New Mineral, and the Rare Minerals Cobalt Pentlandite, Siegenite, Parkerite and Bravoite from the Langis Mine, Cobalt-Gowganda Area, Ontario. Can. Mineral. 1969, 9, 597–616. [Google Scholar]
- Craig, J.R.; Carpenter, A.B. Fletcherite, Cu(Ni,Co)2S4, a New Thiospinel from the Viburnum Trend (New Lead Belt), Missouri. Econ. Geol. 1977, 72, 480–486. [Google Scholar] [CrossRef]
- Zakrzewski, M.A. Minerals of the Bravoite-Villamaninite Series and Cuprian Siegenite from Karniowice, Poland. Can. Mineral. 1984, 22, 499–502. [Google Scholar]
- Imai, N.; Mariko, T.; Shiga, Y. Siegenite from the Nippo Ore Deposit of the Kamaishi Mine, Iwate Prefecture, Japan. Mining Geol. 1973, 23, 347–354. [Google Scholar]
- Kovalev, S.G.; Puchkov, V.N.; Kovalev, S.S. First Findings of Siegenite (CoNi2S4) in Picritic and Picrodoleritic Complexes of the Southern Urals. Dokl. Earth Sc. 2014, 457, 796–802. [Google Scholar] [CrossRef]
- Von Seckendorff, V.; Drüppel, K.; Okrusch, M.; Cook, N.J.; Littmann, S. Oxide-Sulphide Relationships in Sodalite-Bearing Metasomatites of the Epembe-Swartbooisdrif Alkaline Province, North-West Namibia. Miner. Deposita 2000, 35, 430–450. [Google Scholar] [CrossRef]
- Hinchey, J.G.; Hattori, K.H. Magmatic Mineralization and Hydrothermal Enrichment of the High Grade Zone at the Lac Des Iles Palladium Mine, Northern Ontario, Canada. Miner. Deposita 2005, 40, 13–23. [Google Scholar] [CrossRef]
- Beckett-Brown, C.; Mcdonald, A.; Zhe, W. A Crystallographically Oriented Intergrowth of Siegenite (CoNi2S4) and Millerite from the Morokweng Impact Structure, South Africa: Chemistry, Texture, and Origin. Can. Mineral. 2018, 56, 705–722. [Google Scholar] [CrossRef]
- Kiefer, S.; Majzlan, J.; Chovan, M.; Števko, M. Mineral Compositions and Phase Relations of the Complex Sulfarsenides and Arsenides from Dobšiná (Western Carpathians, Slovakia). Ore Geol. Rev. 2017, 89, 894–908. [Google Scholar] [CrossRef]
Locality | Outcrop Code | Number of Samples (Sample Names) | Brief Locality/Sample Description | Mineral Composition * | Accessory Minerals ** |
---|---|---|---|---|---|
Janjevo | JCR_1 | 6 (JCR_1A, SV128, SV150A-D) | A small outcrop of 0.5 m thick listvenite at the contact of serpentinite with the flysch. Both foliated and massive listvenites are present. | Dol, Qz, Ms, Cr Spl | Py, Pn, Vio, Gdf, Sp, Gn |
JCR_6 | 4 (JCR_6A, SV133A-C) | Strongly weathered listvenite outcrop at contact with serpentinite along the road. Visible greenish mesh silica-fuchsite rich aggregates, while the surrounding carbonates are replaced by abundant Fe hydroxides. | Dol, Qz, Mgs, Ms | Cr Spl, Cal, Py, Mlr, Seg, FeOOH | |
JCR_7 | 1 (JCR_7A) | The outcrop of massive greenish listvenites below the waterfall. Products of initial/transitional listvenitization (talc and magnesite) are not visible macroscopically. | Mgs, Dol, Tlc, Qz | Cr Spl, Py, Mlr | |
JCR_8 | 2 (JCR_8A-B) | An outcrop of listvenite with both foliated (dolomite veinlets) and massive textures. | Dol, Qz, Lz, Mnt | Cr Spl, Cal, Py, Vio, Ulm, Sph, Gn | |
JCR_9 | 12 (JCR_Ni1-12) | Big outcrop at the contact of listvenite and flysh series with a significant contribution of disseminated and veinlets of pyrite visible macroscopically. | Dol, Qz, Py | Cr Spl, Mlr, Seg, Ccp | |
Melenica | M1 | 10 (M1_1-8, N1_5, M3_1) | Outcrop of strongly silicified listvenite with veinlets and disseminated base metal sulfides. | Qz, Rds, Sd | Cr Spl, Py, Mrc, Gn, Sp, Ccp, Vio, Seg, Mlr, Gdf, Ulm, Pld, Brt, Bnn, Ttr-Zn, Pb–Sb ss |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluza, K.; Pršek, J.; Mederski, S. Mineralogy and Geochemistry of Listvenite-Hosted Ni–Fe Sulfide Paragenesis—A Case Study from Janjevo and Melenica Listvenite Occurrences (Kosovo). Minerals 2024, 14, 1008. https://doi.org/10.3390/min14101008
Kluza K, Pršek J, Mederski S. Mineralogy and Geochemistry of Listvenite-Hosted Ni–Fe Sulfide Paragenesis—A Case Study from Janjevo and Melenica Listvenite Occurrences (Kosovo). Minerals. 2024; 14(10):1008. https://doi.org/10.3390/min14101008
Chicago/Turabian StyleKluza, Konrad, Jaroslav Pršek, and Sławomir Mederski. 2024. "Mineralogy and Geochemistry of Listvenite-Hosted Ni–Fe Sulfide Paragenesis—A Case Study from Janjevo and Melenica Listvenite Occurrences (Kosovo)" Minerals 14, no. 10: 1008. https://doi.org/10.3390/min14101008
APA StyleKluza, K., Pršek, J., & Mederski, S. (2024). Mineralogy and Geochemistry of Listvenite-Hosted Ni–Fe Sulfide Paragenesis—A Case Study from Janjevo and Melenica Listvenite Occurrences (Kosovo). Minerals, 14(10), 1008. https://doi.org/10.3390/min14101008