Simulation and Parameter Optimisation of Edge Effect in Ore Minerals Roll Crushing Process Based on Discrete Element Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Models
2.2. Discrete Element Method Analysis
2.3. Ore Parameter Calibration Experiment
2.4. Parameters of the Simulation
3. Results and Analyses
3.1. Effect of Different Factors on Edge Effect and Crushing Effect
3.2. Optimisation of HPGR Performance Based on Simulation Results
3.2.1. Box–Behnken Design Methods
3.2.2. Analysis of Variance
3.2.3. Interaction Response Surface Analysis
3.2.4. Construction and Optimisation of Predictive Models
4. Conclusions
- (1)
- The distribution of pressure exerted on the material in the centre and edge regions of the roll under single-factor conditions is investigated. The result demonstrates that as roll speed and roll diameter increase, the material force in each region of SP1–SP9 rises. Additionally, the pressure difference between the material in the edge region of the roll and the centre region exhibits an overall upward trend. Conversely, the roll gap and other factors display the opposite trend, and the change in roll width has a negligible impact on the material force. Therefore, the influence of each factor on the edge effect is in the following order: roll diameter > roll speed > roll gap > roll width.
- (2)
- The effect of single factors on the crushing effect of materials is studied. The findings indicate that the alteration of roll diameter has the most significant influence on particle size distribution, with roll gap as the secondary factor, and roll width exerts a comparatively lesser influence on particle size distribution.
- (3)
- Based on the influence of different factors on the crushing effect and edge effect of HPGR, the optimisation model of roll press performance is established by the response surface method. The optimisation results demonstrate that when the roll speed is 1.25 rad/s, the roll gap is 38 mm, the roll diameter is 2000 mm, the roll width is 742 mm, the material force variance in different areas is 10,334.5 kN2, and the crushing effect is 12.82%. Compared with the previously optimized HPGR, the variance of material force in different areas was reduced by approximately 48.5%. Furthermore, the edge effect of the HPGR has been significantly enhanced.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saramak, D. Challenges in Raw Material Treatment at the Mechanical Processing Stage. Minerals 2021, 11, 940. [Google Scholar] [CrossRef]
- Sadangi, J.K.; Das, S.P. Potential of High-Pressure Grinding Roll (HPGR) for Size Reduction of Hard Banded Iron Ore. Trans. Indian Inst. Met. 2022, 75, 1797–1811. [Google Scholar] [CrossRef]
- Ballantyne, G.R.; Hilden, M.; Van Der Meer, F.P. Improved Characterisation of Ball Milling Energy Requirements for HPGR Products. Miner. Eng. 2018, 116, 72–81. [Google Scholar] [CrossRef]
- Nagata, Y.; Tsunazawa, Y.; Tsukada, K.; Yaguchi, Y.; Ebisu, Y.; Mitsuhashi, K.; Tokoro, C. Effect of the Roll Stud Diameter on the Capacity of a High-Pressure Grinding Roll Using the Discrete Element Method. Miner. Eng. 2020, 154, 106412. [Google Scholar] [CrossRef]
- Campos, T.M.; Bueno, G.; Tavares, L.M. Modeling Comminution of Iron Ore Concentrates in Industrial-Scale HPGR. Powder Technol. 2021, 383, 244–255. [Google Scholar] [CrossRef]
- Yin, W.; Tang, Y.; Ma, Y.; Zuo, W.; Yao, J. Comparison of Sample Properties and Leaching Characteristics of Gold Ore from Jaw Crusher and HPGR. Miner. Eng. 2017, 111, 140–147. [Google Scholar] [CrossRef]
- Rashidi, S.; Rajamani, R.K.; Fuerstenau, D.W. A Review of the Modeling of High Pressure Grinding Rolls. KONA 2017, 34, 125–140. [Google Scholar] [CrossRef]
- Rodriguez, V.A.; Barrios, G.K.P.; Bueno, G.; Tavares, L.M. Investigation of Lateral Confinement, Roller Aspect Ratio and Wear Condition on HPGR Performance Using DEM-MBD-PRM Simulations. Minerals 2021, 11, 801. [Google Scholar] [CrossRef]
- Rodriguez, V.A.; Barrios, G.K.P.; Bueno, G.; Tavares, L.M. Coupled DEM-MBD-PRM Simulations of High-Pressure Grinding Rolls. Part 1: Calibration and Validation in Pilot-Scale. Miner. Eng. 2022, 177, 107389. [Google Scholar] [CrossRef]
- Knorr, B.; Herman, V.; Whalen, D. A Closer Look at Increasing HPGR Efficiency through Reductions in Edge Effect. Miner. Metall. Process. 2016, 33, 1–6. [Google Scholar] [CrossRef]
- Cleary, P.W.; Sinnott, M.D. Axial Pressure Distribution, Flow Behaviour and Breakage within a HPGR Investigation Using DEM. Miner. Eng. 2021, 163, 106769. [Google Scholar] [CrossRef]
- Van Rijswick, R.; Onol, S.; Oliveira, R.; Dierx, B. To Flange or Not to Flange? Miner. Eng. 2024, 208, 108476. [Google Scholar] [CrossRef]
- Baawuah, E.; Kelsey, C.; Addai-Mensah, J.; Skinner, W. Comparison of the Performance of Different Comminution Technologies in Terms of Energy Efficiency and Mineral Liberation. Miner. Eng. 2020, 156, 106454. [Google Scholar] [CrossRef]
- Kazerani Nejad, R.; Sam, A. The Wear Pattern in High Pressure Grinding Rolls. Miner. Process. Extr. Metall. 2017, 126, 238–244. [Google Scholar] [CrossRef]
- Campos, T.M.; Petit, H.A.; Freitas, R.O.; Tavares, L.M. Online Prediction of Pressing Iron Ore Concentrates in an Industrial HPGR. Part 1: Modeling Approach. Miner. Eng. 2023, 201, 108206. [Google Scholar] [CrossRef]
- Izadi-Yazdan Abadi, M.; Zare, S.; Pourshahabadi, J.; Garmsiri, M. Influence of HPGR Operating Parameters on the Edge and Centre Product—An Industrial Trial. Can. Metall. Q. 2024, 1–9. [Google Scholar] [CrossRef]
- Quist, J.; Evertsson, C.M. Cone Crusher Modelling and Simulation Using DEM. Miner. Eng. 2016, 85, 92–105. [Google Scholar] [CrossRef]
- Campos, T.M.; Bueno, G.; Barrios, G.K.P.; Tavares, L.M. Pressing Iron Ore Concentrate in a Pilot-Scale HPGR. Part 1: Experimental Results. Miner. Eng. 2019, 140, 105875. [Google Scholar] [CrossRef]
- Barrios, G.K.P.; Tavares, L.M. A Preliminary Model of High Pressure Roll Grinding Using the Discrete Element Method and Multi-Body Dynamics Coupling. Int. J. Miner. Process. 2016, 156, 32–42. [Google Scholar] [CrossRef]
- Tavares, L.M.; King, R.P. Single-Particle Fracture under Impact Loading. Int. J. Miner. Process. 1998, 54, 1–28. [Google Scholar] [CrossRef]
- Tavares, L.M.; King, R.P. Modeling of Particle Fracture by Repeated Impacts Using Continuum Damage Mechanics. Powder Technol. 2002, 123, 138–146. [Google Scholar] [CrossRef]
- Torres, M.; Casali, A. A Novel Approach for the Modelling of High-Pressure Grinding Rolls. Miner. Eng. 2009, 22, 1137–1146. [Google Scholar] [CrossRef]
- Daniel, M.J.; Morrell, S. HPGR Model Verification and Scale-Up. Miner. Eng. 2004, 17, 1149–1161. [Google Scholar] [CrossRef]
- Jiménez-Herrera, N.; Barrios, G.K.P.; Tavares, L.M. Comparison of Breakage Models in DEM in Simulating Impact on Particle Beds. Adv. Powder Technol. 2018, 29, 692–706. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A Bonded-Particle Model for Rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Esnault, V.P.B.; Zhou, H.; Heitzmann, D. New Population Balance Model for Predicting Particle Size Evolution in Compression Grinding. Miner. Eng. 2015, 73, 7–15. [Google Scholar] [CrossRef]
- Tavares, L.M.; Das Neves, P.B. Microstructure of Quarry Rocks and Relationships to Particle Breakage and Crushing. Int. J. Miner. Process. 2008, 87, 28–41. [Google Scholar] [CrossRef]
- Tavares, L.M. Analysis of Particle Fracture by Repeated Stressing as Damage Accumulation. Powder Technol. 2009, 190, 327–339. [Google Scholar] [CrossRef]
- Gunst, R.F.; Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Technometrics 1996, 38, 285. [Google Scholar] [CrossRef]
- Montgomery, D.C. (Ed.) Design and Analysis of Experiments, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; ISBN 978-1-118-14692-7. [Google Scholar]
Variable | Symbol | Value | Variable | Symbol | Value |
---|---|---|---|---|---|
Roll diameter (mm) | D | 2000 | Roll gap (mm) | X0 | 38 |
Roll width (mm) | L | 1000 | Studs diameter (mm) | Dst | 28 |
Roll speed (rad/s) | 2.25 | Studs height (mm) | Hst | 7 |
Parameter | Value | Unit |
---|---|---|
Damage Constant | 5 | - |
E Infinity | 92.27 | J/kg |
D0 | 13.2 | mm |
Phi | 2.08 | - |
Std Deviation | 2.62 | - |
Alpha Percentage | 42.13 | - |
b | 0.38 | - |
Groups | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Factor | |||||||||||
Roll speed (rad/s) | 1.25 | 1.5 | 1.75 | 2 | 2.25 | 2.5 | 2.75 | 3 | 3.25 | 3.5 | |
Roll gap (mm) | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | |
Roll diameter (mm) | 1600 | 1700 | 1800 | 1900 | 2000 | 2100 | 2200 | 2300 | 2400 | 2500 | |
Roll width (mm) | 742 | 806.5 | 871 | 935.5 | 1000 | 1064.5 | 1129 | 1193.5 | 1258 | 1322.5 |
Parameter | Value | ||
---|---|---|---|
DEM settings | Individual parameters | ore | steel |
Density | 3948 kg/m2 | 7800 kg/m2 | |
Shear stiffness | 1.6 × 107 pa | 7 × 1010 pa | |
Poisson’s ratio | 0.25 | 0.3 | |
Contact parameters | ore-ore | ore-steel | |
Coefficient of restitution | 0.1 | 0.1 | |
Coefficient of static friction | 0.5 | 0.53 | |
Coefficient of rolling friction | 0.1 | 0.1 |
Particle Size (mm) | 17.6 | 22.4 | 27.2 | 28.8 | 32 | 33.6 | 35.2 |
---|---|---|---|---|---|---|---|
Mass ratio (%) | 1 | 2 | 5 | 10 | 72 | 5 | 5 |
Factors | Roll Speed (rad/s) | Roll Gap (mm) | Roll Diameter (mm) | Roll Width (mm) |
---|---|---|---|---|
Low levels | 1.25 | 38 | 1600 | 742 |
High levels | 2.25 | 42 | 2000 | 1000 |
Experiment Number | Roll Speed X1 (rad/s) | Roll Gap X2 (mm) | Roll Diameter X3 (mm) | Roll Width X4 (mm) | Edge Effect (kN2) | Crushing Effect (%) |
---|---|---|---|---|---|---|
1 | 1.75 | 38 | 1800 | 742 | 8422.15 | 0.119353 |
2 | 2.25 | 38 | 1800 | 871 | 14,406.71 | 0.123066 |
3 | 1.75 | 40 | 1600 | 1000 | 5101.46 | 0.100675 |
4 | 1.75 | 38 | 1600 | 871 | 6706.40 | 0.106481 |
5 | 1.75 | 40 | 1800 | 871 | 12,353.83 | 0.113916 |
6 | 1.75 | 42 | 1600 | 871 | 5307.83 | 0.093166 |
7 | 2.25 | 40 | 1800 | 742 | 10,826.44 | 0.113247 |
8 | 1.25 | 40 | 1800 | 742 | 6648.66 | 0.108158 |
9 | 1.25 | 38 | 1800 | 871 | 7499.81 | 0.118452 |
10 | 1.75 | 42 | 2000 | 871 | 15,176.3 | 0.120060 |
11 | 1.75 | 40 | 2000 | 1000 | 18,123.5 | 0.128555 |
12 | 1.25 | 40 | 2000 | 871 | 11,716 | 0.122009 |
13 | 1.25 | 40 | 1800 | 1000 | 8098.51 | 0.111799 |
14 | 1.75 | 40 | 1800 | 871 | 10,507.07 | 0.113609 |
15 | 1.75 | 38 | 1800 | 1000 | 12,848.88 | 0.120726 |
16 | 2.25 | 40 | 1800 | 1000 | 13,346.61 | 0.117662 |
17 | 1.75 | 40 | 1800 | 871 | 10,163.12 | 0.114377 |
18 | 1.75 | 42 | 1800 | 742 | 9977.48 | 0.107014 |
19 | 1.75 | 40 | 1800 | 871 | 11,162 | 0.110987 |
20 | 2.25 | 42 | 1800 | 871 | 12,570.62 | 0.110368 |
21 | 1.75 | 40 | 1600 | 742 | 5905.54 | 0.09918 |
22 | 1.75 | 42 | 1800 | 1000 | 10,204.35 | 0.109181 |
23 | 2.25 | 40 | 2000 | 871 | 20,547 | 0.130256 |
24 | 1.75 | 38 | 2000 | 871 | 20,257.62 | 0.134296 |
25 | 1.25 | 40 | 1600 | 871 | 3381.35 | 0.097231 |
26 | 1.75 | 40 | 2000 | 742 | 14,945.62 | 0.125963 |
27 | 1.25 | 42 | 1800 | 871 | 7809.48 | 0.105228 |
28 | 1.75 | 40 | 1800 | 871 | 11,060.96 | 0.113562 |
29 | 2.25 | 40 | 1600 | 871 | 6614.91 | 0.102309 |
Factors | F-Value | p-Value | Factors | F-Value | p-Value |
---|---|---|---|---|---|
Model | 53.14 | <0.0001 | BC | 4.83 | 0.0453 |
A | 130.52 | <0.0001 | BD | 6.28 | 0.0252 |
B | 9.82 | 0.0073 | CD | 5.65 | 0.0323 |
C | 544.88 | <0.0001 | A2 | 5.57 | 0.0333 |
D | 14.36 | 0.0020 | B2 | 0.3288 | 0.5755 |
AB | 1.64 | 0.2212 | C2 | 2.43 | 0.1411 |
AC | 11.16 | 0.0049 | D2 | 3.95 | 0.0668 |
AD | 0.4080 | 0.5333 | Lack of Fit | 1.01 | 0.5453 |
R2 = 0.9815 | R2Adj = 0.9631 | R2Pre = 0.9157 | Adeq Precision = 27.9104 |
Figure | F-Value | p-Value | Factors | F-Value | p-Value |
---|---|---|---|---|---|
Model | 167.39 | <0.0001 | BC | 0.1765 | 0.6808 |
A | 80.38 | <0.0001 | BD | 0.1311 | 0.7227 |
B | 415.34 | <0.0001 | CD | 0.2546 | 0.6217 |
C | 1823.71 | <0.0001 | A2 | 0.1959 | 0.6648 |
D | 17.07 | 0.0010 | B2 | 3.12 | 0.0991 |
AB | 0.0576 | 0.8138 | C2 | 0.1056 | 0.7500 |
AC | 2.09 | 0.1702 | D2 | 0.0038 | 0.9514 |
AD | 0.1247 | 0.7292 | Lack of Fit | 0.5538 | 0.7956 |
R2 = 0.9941 | R2Adj = 0.9881 | R2Pre = 0.9762 | Adeq Precision = 50.6274 |
Before Optimisation | After Optimisation | |
---|---|---|
Crushing effect | 12.8% | 12.82% |
Throughput | 14.5 kg/0.025 s | 10 kg/0.025 s |
Net power | 2 × 41 kW | 2 × 20 kW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, R.; Wu, W.; Zhao, S.; Xing, H.; Qin, Z. Simulation and Parameter Optimisation of Edge Effect in Ore Minerals Roll Crushing Process Based on Discrete Element Method. Minerals 2025, 15, 89. https://doi.org/10.3390/min15010089
Gu R, Wu W, Zhao S, Xing H, Qin Z. Simulation and Parameter Optimisation of Edge Effect in Ore Minerals Roll Crushing Process Based on Discrete Element Method. Minerals. 2025; 15(1):89. https://doi.org/10.3390/min15010089
Chicago/Turabian StyleGu, Ruijie, Wenzhe Wu, Shuaifeng Zhao, Hao Xing, and Zhenzhong Qin. 2025. "Simulation and Parameter Optimisation of Edge Effect in Ore Minerals Roll Crushing Process Based on Discrete Element Method" Minerals 15, no. 1: 89. https://doi.org/10.3390/min15010089
APA StyleGu, R., Wu, W., Zhao, S., Xing, H., & Qin, Z. (2025). Simulation and Parameter Optimisation of Edge Effect in Ore Minerals Roll Crushing Process Based on Discrete Element Method. Minerals, 15(1), 89. https://doi.org/10.3390/min15010089