Kinematic Geometry of a Timelike Line Trajectory in Hyperbolic Locomotions
Abstract
:1. Introduction
2. Preliminaries
Hyperbolic Dual Spherical Locomotions
3. Timelike Line with Particular Trajectories
3.1. The Euler–Savary and Disteli Formulae
3.2. A Timelike Line Congruence
- (a)
- Archimedes with its striction curve is a cylindrical helix for , , , and (Figure 3).
- (b)
- Lorentzian sphere with its striction curve is a circle for , , , and (Figure 4).
- (c)
- helicoid with its striction curve is a line for , , , , and (Figure 5).
- (d)
- cone with its striction curve is a stationary point for , , , and (Figure 6).
4. Inflection Timelike Line Congruence
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bottema, O.; Roth, B. Theoretical Kinematics; North-Holland Press: New York, NY, USA, 1979. [Google Scholar]
- Karger, A.; Novak, J. Space Kinematics and Lie Groups; Gordon and Breach Science Publishers: New York, NY, USA, 1985. [Google Scholar]
- Pottman, H.; Wallner, J. Computational Line Geometry; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Stachel, H. On spatial involute gearing, TU Wien, Geometry Preprint No 119. In Proceedings of the 6th International Conference on Applied Informatics, Eger, Hungary, 27–31 January 2004. [Google Scholar]
- Dooner, D.; Garcia, R.G.; Martinez, J.M.R. On spatial relations to the Euler–Savary formula. Mech. Mach. Theory 2023, 189, 105427. [Google Scholar] [CrossRef]
- Abdel-Baky, R.A.; Al-Solamy, F.R. A new geometrical approach to one-parameter spatial motion. J. Eng. Math. 2008, 60, 149–172. [Google Scholar] [CrossRef]
- Ayyilidiz, N.; Yalcin, S.N. On instantaneous invariants in dual Lorentzian space kinematics. Arch. Mech. 2010, 62, 223–238. [Google Scholar]
- Figlioini, G.; Stachel, H.; Angeles, J. The computational fundamentals of spatial cycloidal gearing. In Computational Kinematics: Proceedings of the 5th International Workshop on Computational Kinematics, Duisburg, Germany, 6–8 May 2009; Kecskeméthy, A., Müller, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 375–384. [Google Scholar]
- Turhan, T.; Ayyıldız, N. A study on geometry of spatial kinematics in Lorentzian space. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2017, 21, 808–811. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Pang, B.; Zhao, W. An accurate prediction method of cutting forces in 5-axis áank milling of sculptured surface. Int. J. Mach. Tools Manuf. 2016, 104, 26–36. [Google Scholar] [CrossRef]
- Ekinci, Z.; Uğurlu, H.H. Blaschke approach to Euller-Savary formulae. Konuralp J. Math. 2016, 4, 95–115. [Google Scholar]
- Özyilmaz, E. Some results on space-like line congruences and their space-like parameter ruled surface. Turk. J. Math. 1999, 23, 333–344. [Google Scholar]
- Tosun, M.; Gungor, M.A.; Okur, I. On the One-Parameter Lorentzian Spherical Motions and Euler-Savary Formula. ASME J. Appl. Mech. 2007, 74, 972–977. [Google Scholar] [CrossRef]
- Gungor, M.A.; Ersoy, S.; Tosun, M. Dual Lorentzian spherical motions and dual Euler–Savary formula. Eur. J. Mech. A/Solids 2009, 28, 820–826. [Google Scholar] [CrossRef]
- Palavar, S.; Bilici, M. Dual ruled surface constructed by the pole curve of the involute curve. Int. J. Open Probl. Compt. Math. 2022, 15, 39–53. [Google Scholar]
- Rawya, H.A.; Ali, A. Geometry of the line space associated to a given dual ruled surface. AIMS Math. 2022, 7, 8542–8557. [Google Scholar] [CrossRef]
- Saad, M.K.; Ansari, A.Z.; Akram, M.; Alharbi, F. Spacelike surfaces with a common line of curvature in Lorentz-Minkowski 3-space. Wseas Trans. Math. 2021, 20, 207–217. [Google Scholar] [CrossRef]
- Inalcik, A.; Ersoy, S. Ball and Burmester points in Lorentzian sphere kinematics. Kuwait J. Sci. 2015, 42, 50–63. [Google Scholar]
- Alluhaibi, N.S.; Abdel-Baky, R.A.; Naghi, M.F. On the Bertrand offsets of timelike ruled surfaces in Minkowski 3-space. Symmetry 2022, 14, 673. [Google Scholar] [CrossRef]
- Disteli, M. Uber des Analogon der Savaryschen Formel und Konstruktion in der kinematischen Geometrie des Raumes. Z. Math. Phys. 1914, 62, 261–309. [Google Scholar]
- Önder, M.; Uğurlu, H.H.; Caliskan, A. The Euler–Savary analogue equations of a point trajectory in Lorentzian spatial motion. Proc. Natl. Acad. Sci. India Sect. Phys. Sci. 2013, 83, 163–169. [Google Scholar] [CrossRef]
- Nazra, S.; Abdel-Baky, R.A. Singularities of non-lightlike developable surfaces in Minkowski 3-space. Mediterr. J. Math. 2023, 20, 45. [Google Scholar] [CrossRef]
- Li, Y.; Tuncer, O. On (contra) pedals and (anti)orthotomics of frontals in de Sitter 2-space. Math. Meth. Appl. Sci. 2023, 1, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Aldossary, M.T.; Abdel-Baky, R.A. Spacelike circular surfaces in Minkowski 3-Space. Symmetry 2023, 15, 173. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Nazra, S.H.; Abdel-Baky, R.A. Singularities for timelike developable surfaces in Minkowski 3- Space. Symmetry 2023, 15, 277. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almoneef, A.A.; Abdel-Baky, R.A. Kinematic Geometry of a Timelike Line Trajectory in Hyperbolic Locomotions. Axioms 2023, 12, 915. https://doi.org/10.3390/axioms12100915
Almoneef AA, Abdel-Baky RA. Kinematic Geometry of a Timelike Line Trajectory in Hyperbolic Locomotions. Axioms. 2023; 12(10):915. https://doi.org/10.3390/axioms12100915
Chicago/Turabian StyleAlmoneef, Areej A., and Rashad A. Abdel-Baky. 2023. "Kinematic Geometry of a Timelike Line Trajectory in Hyperbolic Locomotions" Axioms 12, no. 10: 915. https://doi.org/10.3390/axioms12100915
APA StyleAlmoneef, A. A., & Abdel-Baky, R. A. (2023). Kinematic Geometry of a Timelike Line Trajectory in Hyperbolic Locomotions. Axioms, 12(10), 915. https://doi.org/10.3390/axioms12100915