Variability in Nutrient Content and Biochemical Parameters of Soil Under Rotational Pasture Management of Farmed Fallow Deer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Sampling
2.4. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Soils
3.2. Nutrient Content in Soils
3.3. The Activity of Some Enzymes in Soils
3.4. Assessment of Inter-Relationships
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burke, K.M. Seasonal Diets and Foraging Selectivity of White-Tailed Deer in the Rolling Plains Ecological Region. Unpublished Thesis, Southwest Texas State University, San Marcos, TX, USA, 2003. Available online: https://hdl.handle.net/10877/9280 (accessed on 7 September 2024).
- Pedersen, C.; Post, E. Interactions between Herbivory and Warming in Aboveground Biomass Production of Arctic Vegetation. BMC Ecol. 2008, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Kulik, M.; Warda, M.; Gawryluk, A.; Bochniak, A.; Patkowski, K.; Lipiec, A.; Gruszecki, T.; Pluta, M.; Bielińska, E.; Futa, B. Grazing of Native Livestock Breeds as a Method of Grassland Protection in Roztocze National Park, Eastern Poland. J. Ecol. Eng. 2020, 21, 61–69. [Google Scholar] [CrossRef]
- Rysiak, A.; Chabuz, W.; Sawicka-Zugaj, W.; Zdulski, J.; Grzywaczewski, G.; Kulik, M. Comparative Impacts of Grazing and Mowing on the Floristics of Grasslands in the Buffer Zone of Polesie National Park, Eastern Poland. Glob. Ecol. Conserv. 2021, 27, e01612. [Google Scholar] [CrossRef]
- Chabuz, W.; Kulik, M.; Sawicka-Zugaj, W.; Żółkiewski, P.; Warda, M.; Pluta, M.; Lipiec, A.; Bochniak, A.; Zdulski, J. Impact of the Type of Use of Permanent Grasslands Areas in Mountainous Regions on the Floristic Diversity of Habitats and Animal Welfare. Glob. Ecol. Conserv. 2019, 19, e00629. [Google Scholar] [CrossRef]
- Patkowski, K.; Pluta, M.; Lipiec, A.; Greguła-Kania, M.; Gruszecki, T.M. Foraging Behavior Patterns of Sheep and Horses under a Mixed Species Grazing System. J. Appl. Anim. Welf. Sci. 2019, 22, 357–363. [Google Scholar] [CrossRef]
- Futa, B.; Patkowski, K.; Bielińska, E.J.; Gruszecki, T.M.; Pluta, M.; Kulik, M.; Chmielewski, S. Sheep and Horse Grazing in a Large-Scale Protection Area and Its Positive Impact on Chemical and Biological Soil Properties. Pol. J. Soil Sci. 2016, 49, 111. [Google Scholar] [CrossRef]
- Futa, B.; Trzcińska, J.; Patkowski, K. Impact of Extensive Sheep Grazing on the Biochemical Status of Soils of the Grassland Habitat of Natura 2000. J. Ecol. Eng. 2024, 25, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Futa, B.; Tajchman, K.; Steiner-Bogdaszewska, Ż.; Drozd, L.; Gruszecki, T.M. Preliminary Results of Effect of Rotational Grazing of Farmed Red Deer (Cervus elaphus) on the Biochemical Status of Soil. Agronomy 2021, 11, 558. [Google Scholar] [CrossRef]
- Kulik, M.; Tajchman, K.; Lipiec, A.; Bąkowski, M.; Ukalska-Jaruga, A.; Ceacero, F.; Pecio, M.; Steiner-Bogdaszewska, Ż. The Impact of Rotational Pasture Management for Farm-Bred Fallow Deer (Dama dama) on Fodder Quality in the Context of Animal Welfare. Agronomy 2023, 13, 1155. [Google Scholar] [CrossRef]
- Janiszewski, P.; Bogdaszewska, Z.; Bogdaszewski, M.; Bogdaszewski, P.; Cilulko-Dołęga, J.; Nasiadka, P.; Steiner, Ż. Breeding and Farm Breeding of Deer; Publishing House UWM: Olsztyn, Poland, 2014. [Google Scholar]
- Lashley, M.A.; Harper, C.A. The Effects of Extreme Drought on Native Forage Nutritional Quality and White-Tailed Deer Diet Selection. Southeast. Nat. 2012, 11, 699–710. [Google Scholar] [CrossRef]
- Hidosa, D.; Guyo, M. Climate Change Effects on Livestock Feed Resources: A Review. J. Fish. Livest. Prod. 2017, 5, 4. [Google Scholar] [CrossRef]
- Litherland, A.J.; Woodward, S.J.R.; Stevens, D.R.; McDougal, D.B.; Boom, C.J.; Knight, T.L.; Lambert, M.G. Seasonal Variations in Pasture Quality on New Zealand Sheep and Beef Farms. Proc. N. Z. Soc. Anim. Prod. 2002, 62, 138–142. [Google Scholar]
- Kreulen, D. Wildebeest Habitat Selection on the Serengeti Plains, Tanzania, in Relation to Calcium and Lactation: A Preliminary Report. Afr. J. Ecol. 1975, 13, 297–304. [Google Scholar] [CrossRef]
- McNaughton, S.J. Mineral Nutrition and Spatial Concentrations of African Ungulates. Nature 1988, 334, 343–345. [Google Scholar] [CrossRef]
- McNaughton, S.J. Mineral Nutrition and Seasonal Movements of African Migratory Ungulates. Nature 1990, 345, 613–615. [Google Scholar] [CrossRef]
- Alldredge, M.W.; Peek, J.M.; Wall, W.A. Nutritional Quality of Forages Used by Elk in Northern Idaho. J. Range Manag. 2002, 55, 253–259. [Google Scholar] [CrossRef]
- Wilson, P.R.; Grace, N.D. A Review of Tissue Reference Values Used to Assess the Trace Element Status of Farmed Red Deer (Cervus elaphus). N. Z. Vet. J. 2001, 49, 126–132. [Google Scholar] [CrossRef]
- Ceacero, F.; Landete-Castillejos, T.; García, A.J.; Estévez, J.A.; Gallego, L. Can Iberian Red Deer (Cervus elaphus hispanicus) Discriminate among Essential Minerals in Their Diet? Br. J. Nutr. 2010, 103, 617–626. [Google Scholar] [CrossRef]
- Ceacero, F.; Landete-Castillejos, T.; Garca, A.J.; Estévez, J.A.; Gaspar-Lpez, E.; Gallego, L. Effects of Ad Libitum Mineral Consumption in Iberian Red Deer Hinds and Calves. Anim. Prod. Sci. 2010, 50, 37–44. [Google Scholar] [CrossRef]
- Agricultural Research Council (Great Britain); Commonwealth Agricultural Bureaux. The Nutrient Requirements of Ruminant Livestock: Technical Review; Commonwealth Agricultural Bureaux: Slough, UK, 1980. [Google Scholar]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids; National Academy Press: Washington, DC, USA, 2007; Volume 9. [Google Scholar]
- Asher, G.W.; Stevens, D.R.; Archer, J.A.; Barrell, G.K.; Scott, I.C.; Ward, J.F.; Littlejohn, R.P. Energy and Protein as Nutritional Drivers of Lactation and Calf Growth of Farmed Red Deer. Livest. Sci. 2011, 140, 8–16. [Google Scholar] [CrossRef]
- Frank, D.A.; Groffman, P.M. Ungulate vs. Landscape Control of Soil C and N Processes in Grasslands of Yellowstone National Park. Ecology 1998, 79, 2229–2241. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Stuedemann, J.A.; Schomberg, H.H.; Wilkinson, S.R. Soil Organic C and N Pools under Long-Term Pasture Management in the Southern Piedmont USA. Soil Biol. Biochem. 2000, 32, 469–478. [Google Scholar] [CrossRef]
- Sirotnak, J.M.; Huntly, N.J. Direct and Indirect Effects of Herbivores on Nitrogen Dynamics: Voles in Riparian Areas. Ecology 2000, 81, 78–87. [Google Scholar] [CrossRef]
- Wardle, D.A.; Barker, G.M.; Yeates, G.W.; Bonner, K.I.; Ghani, A. Introduced Browsing Mammals in New Zealand Natural Forests: Aboveground and Belowground Consequences. Ecol. Monogr. 2001, 71, 587–614. [Google Scholar] [CrossRef]
- Stark, S.; Männistö, M.K.; Smolander, A. Multiple Effects of Reindeer Grazing on the Soil Processes in Nutrient-Poor Northern Boreal Forests. Soil Biol. Biochem. 2010, 42, 2068–2077. [Google Scholar] [CrossRef]
- Gómez, J.A.; Ceacero, F.; Landete-Castillejos, T.; Gaspar-López, E.; García, A.J.; Gallego, L. Factors Affecting Antler Investment in Iberian Red Deer. Anim. Prod. Sci. 2012, 52, 867–873. [Google Scholar] [CrossRef]
- Gómez, J.Á.; Landete-Castillejos, T.; García, A.J.; Gaspar-López, E.; Estevez, J.A.; Gallego, L. Lactation Growth Influences Mineral Composition of First Antler in Iberian Red Deer Cervus elaphus hispanicus. Wildl. Biol. 2008, 14, 331–338. [Google Scholar] [CrossRef]
- Landete-Castillejos, T.; Estevez, J.A.; Ceacero, F.; Garcia, A.J.; Gallego, L. A Review of Factors Affecting Antler Composition and Mechanics. Front. Biosci.-Elite 2012, 4, 2328–2339. [Google Scholar] [CrossRef]
- Olguin, C.A.; Landete-Castillejos, T.; Ceacero, F.; García, A.J.; Gallego, L. Effects of Feed Supplementation on Mineral Composition, Mechanical Properties and Structure in Femurs of Iberian Red Deer Hinds (Cervus elaphus hispanicus). PLoS ONE 2013, 8, e65461. [Google Scholar] [CrossRef]
- Ceacero, F. Long or Heavy? Physiological Constraints in the Evolution of Antlers. J. Mamm. Evol. 2016, 23, 209–216. [Google Scholar] [CrossRef]
- Dryden, G.M.L. Nutrition of Antler Growth in Deer. Anim. Prod. Sci. 2016, 56, 962–970. [Google Scholar] [CrossRef]
- Gaspar-López, E.; García, A.J.; Landete-Castillejos, T.; Carrión, D.; Estevez, J.A.; Gallego, L. Growth of the First Antler in Iberian Red Deer (Cervus elaphus hispanicus). Eur. J. Wildl. Res. 2008, 54, 1–5. [Google Scholar] [CrossRef]
- Tajchman, K.; Bogdaszewski, M.; Kowalczuk-Vasilev, E. Effects of Supplementation with Different Levels of Calcium and Phosphorus on Mineral Content of First Antler, Bone, Muscle, and Liver of Farmed Fallow Deer (Dama dama). Can. J. Anim. Sci. 2020, 100, 17–26. [Google Scholar] [CrossRef]
- Zannèse, A.; Morellet, N.; Targhetta, C.; Coulon, A.; Fuser, S.; Hewison, A.J.M.; Ramanzin, M. Spatial Structure of Roe Deer Populations: Towards Defining Management Units at a Landscape Scale. J. Appl. Ecol. 2006, 43, 1087–1097. [Google Scholar] [CrossRef]
- Sprinkle, J.E.; Baker, S.D.; Church, J.A.; Findlay, J.R.; Graf, S.M.; Jensen, K.S.; Williams, S.K.; Willmore, C.M.; Lamb, J.B.; Hansen, D.W. Case Study: Regional Assessment of Mineral Element Concentrations in Idaho Forage and Range Grasses. Prof. Anim. Sci. 2018, 34, 494–504. [Google Scholar] [CrossRef]
- Tajchman, K.; Ukalska-Jaruga, A.; Ceacero, F.; Pecio, M.; Steiner-Bogdaszewska, Ż. Concentration of Macroelements and Trace Elements in Farmed Fallow Deer Antlers Depending on Age. Animals 2022, 12, 3409. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cao, W.; Wang, J.; Li, X.; Xu, C.; Shi, S. Effects of Grazing Regime on Vegetation Structure, Productivity, Soil Quality, Carbon and Nitrogen Storage of Alpine Meadow on the Qinghai-Tibetan Plateau. Ecol. Eng. 2017, 98, 123–133. [Google Scholar] [CrossRef]
- Finzi, A.C.; Austin, A.T.; Cleland, E.E.; Frey, S.D.; Houlton, B.Z.; Wallenstein, M.D. Responses and Feedbacks of Coupled Biogeochemical Cycles to Climate Change: Examples from Terrestrial Ecosystems. Front. Ecol. Environ. 2011, 9, 61–67. [Google Scholar] [CrossRef]
- Lal, R. Accelerated Soil Erosion as a Source of Atmospheric CO2. Soil Tillage Res. 2019, 188, 35–40. [Google Scholar] [CrossRef]
- Lemanowicz, J.; Haddad, S.A.; Bartkowiak, A.; Lamparski, R.; Wojewódzki, P. The Role of an Urban Park’s Tree Stand in Shaping the Enzymatic Activity, Glomalin Content and Physicochemical Properties of Soil. Sci. Total Environ. 2020, 741, 140446. [Google Scholar] [CrossRef]
- Nannipieri, P.; Trasar-Cepeda, C.; Dick, R.P. Soil Enzyme Activity: A Brief History and Biochemistry as a Basis for Appropriate Interpretations and Meta-Analysis. Biol. Fertil. Soils 2018, 54, 11–19. [Google Scholar] [CrossRef]
- Wolinska, A.; Stepniewsk, Z. Dehydrogenase Activity in the Soil Environment. Dehydrogenases 2012, 10, 183–210. [Google Scholar] [CrossRef]
- Koçak, B. Importance of Urease Activity in Soil. Int. Sci. Vocat. Stud. Congr.–Sci. Health 2020, 12, 51–60. [Google Scholar]
- Bueis, T.; Turrión, M.B.; Bravo, F.; Pando, V.; Muscolo, A. Factors Determining Enzyme Activities in Soils under Pinus halepensis and Pinus sylvestris Plantations in Spain: A Basis for Establishing Sustainable Forest Management Strategies. Ann. Sci. 2018, 75, 34. [Google Scholar] [CrossRef]
- Furtak, K.; Gałązka, A. Enzymatic Activity as a Popular Parameter Used to Determine the Quality of the Soil Environment. Pol. J. Agron. 2019, 37, 22–30. [Google Scholar] [CrossRef]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of Phosphatase Enzymes in Soil. In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling; Springer: Berlin/Heidelberg, Germany, 2011; pp. 215–243. [Google Scholar] [CrossRef]
- Qin, W.; Zhao, X.; Yang, F.; Chen, J.; Mo, Q.; Cui, S.; Chen, C.; He, S.; Li, Z. Impact of Fertilization and Grazing on Soil N and Enzyme Activities in a Karst Pasture Ecosystem. Geoderma 2023, 437, 116578. [Google Scholar] [CrossRef]
- Bi, X.; Li, B.; Xu, X.; Zhang, L. Response of Vegetation and Soil Characteristics to Grazing Disturbance in Mountain Meadows and Temperate Typical Steppe in the Arid Regions of Central Asian, Xinjiang. Int. J. Environ. Res. Public Health 2020, 17, 4572. [Google Scholar] [CrossRef] [PubMed]
- Stacja Badawcza Instytutu Parazytologii PAN. Available online: https://kosewopan.pl/pl/home/ (accessed on 22 September 2024).
- Darmochwał, T.; Rumiński, M.J. Warmia Mazury Guide; TD Agency: Białystok, Poland, 1998. [Google Scholar]
- FEDFA (The Federation of European Deer Farmers Associations). IOP Publishing PhysicsWeb. 2023. Available online: https://www.fedfa.com/ (accessed on 18 September 2024).
- Mattiello, S. Welfare Issues of Modern Deer Farming. Ital. J. Anim. Sci. 2009, 8 (Suppl. 1), 205–217. [Google Scholar] [CrossRef]
- FAO; IUSS. World Reference Base for Soil Resources 2014, Update 2015. International soil classification system for naming soils and creating legends for soil maps. WRB J. World Soil Resour. Rep. 2015, 106. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/bcdecec7-f45f-4dc5-beb1-97022d29fab4/content (accessed on 24 September 2024).
- ISO 14255:1998; Soil Quality—Determination of Nitrate Nitrogen, Ammonium Nitrogen and Total Soluble Nitrogen in Air-Dry Soils Using Calcium Chloride Solution as Extractant. ISO: Geneva, Switzerland, 1998.
- ISO 13878:1998; Soil Quality—Determination of Total Nitrogen Content by Dry Combustion (Elemental Analysis). ISO: Geneva, Switzerland, 1998.
- ISO 14235:1988; Soil Quality—Determination of Organic Carbon by Sulfochromic Oxidation. ISO: Geneva, Switzerland, 1988.
- ISO 10390:2021; Soil, Treated Biowaste and Sludge—Determination of pH. ISO: Geneva, Switzerland, 2021.
- Thalmann, A. Zur Methodik Der Bestimmung Der DehydrogenaseaktivitAt Im Boden Mittels Triphenytetrazoliumchlorid (TTC). Landwirtsch. Forsch. 1968, 21, 249–258. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Use of P-Nitrophenyl Phosphate for Assay of Soil Phosphatase Activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Zantua, M.I.; Bremner, J.M. Comparison of Methods of Assaying Urease Activity in Soils. Soil Biol. Biochem. 1975, 7, 291–295. [Google Scholar] [CrossRef]
- Wróbel, B.; Zielewicz, W.; Staniak, M. Challenges of Pasture Feeding Systems—Opportunities and Constraints. Agriculture 2023, 13, 974. [Google Scholar] [CrossRef]
- Parikh, S.J.; James, B.R. Soil: The Foundation of Agriculture. Nat. Educ. Knowledg 2012, 3, 2. [Google Scholar]
- Bhat, M.A.; Mishra, A.K.; Shah, S.N.; Bhat, M.A.; Jan, S.; Rahman, S.; Baek, K.-H.; Jan, A.T. Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants. Curr. Issues Mol. Biol. 2024, 46, 5194–5222. [Google Scholar] [CrossRef]
- Kaspari, M.; Welti, E.A.R. Nutrient Dilution and the Future of Herbivore Populations. Trends Ecol. Evol. 2024, 39, 809–820. [Google Scholar] [CrossRef]
- Kathpalia, R.; Bhatla, S.C. Plant Mineral Nutrition. In Plant Physiology, Development and Metabolism; Springer: Singapore, 2018; pp. 37–81. [Google Scholar] [CrossRef]
- Samaei, F.; Emami, H.; Lakzian, A. Assessing Soil Quality of Pasture and Agriculture Land Uses in Shandiz County, Northwestern Iran. Ecol. Indic. 2022, 139, 108974. [Google Scholar] [CrossRef]
- Vasu, D.; Singh, S.K.; Ray, S.K.; Duraisami, V.P.; Tiwary, P.; Chandran, P.; Nimkar, A.M.; Anantwar, S.G. Soil Quality Index (SQI) as a Tool to Evaluate Crop Productivity in Semi-Arid Deccan Plateau, India. Geoderma 2016, 282, 70–79. [Google Scholar] [CrossRef]
- Kumbasli, M.; Makineci, E.; Cakir, M. Long-Term Effects of Red Deer (Cervus elaphus) Grazing on Soil in a Breeding Area. J. Environ. Biol. 2010, 31, 185–188. [Google Scholar]
- Hassan, N.; Abdullah, I.; Khan, W.; Khan, A.; Ahmad, N.; Iqbal, B.; Ali, I.; Hassan, A.M.; Dai, D.-Q.; El-Kahtany, K.; et al. Effect of Grazing and Mowing on Soil Physiochemical Properties in a Semi-Arid Grassland of Northeast China. Pol. J. Environ. Stud. 2024, 33, 1725–1735. [Google Scholar] [CrossRef]
- Zhang, J.; Zuo, X.; Zhou, X.; Lv, P.; Lian, J.; Yue, X. Long-Term Grazing Effects on Vegetation Characteristics and Soil Properties in a Semiarid Grassland, Northern China. Environ. Monit. Assess. 2017, 189, 216. [Google Scholar] [CrossRef] [PubMed]
- Hata, K.; Kohri, M.; Morita, S.; Hiradate, S.; Kachi, N. Complex Interrelationships among Aboveground Biomass, Soil Chemical Properties, and Events Caused by Feral Goats and Their Eradication in a Grassland Ecosystem of an Island. Ecosystems 2014, 17, 1082–1094. [Google Scholar] [CrossRef]
- Pei, S.; Fu, H.; Wan, C. Changes in Soil Properties and Vegetation Following Exclosure and Grazing in Degraded Alxa Desert Steppe of Inner Mongolia, China. Agric. Ecosyst. Environ. 2008, 124, 33–39. [Google Scholar] [CrossRef]
- Hao, Y.; He, Z. Effects of Grazing Patterns on Grassland Biomass and Soil Environments in China: A Meta-Analysis. PLoS ONE 2019, 14, e0215223. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil Health and Carbon Management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Cheng, Y.; Du, A.; Wang, Z.; Zhu, W.; Ren, S.; Xu, Y.; Ren, S. Soil Enzyme Activity Differs among Native Species and Continuously Planted Eucalyptus Plantations. Forests 2023, 14, 2210. [Google Scholar] [CrossRef]
- Sato, C.F.; Strong, C.L.; Holliday, P.; Florance, D.; Pierson, J.; Lindenmayer, D.B. Environmental and Grazing Management Drivers of Soil Condition. Agric. Ecosyst. Environ. 2019, 276, 1–7. [Google Scholar] [CrossRef]
- Chang, Q.; Wang, L.; Ding, S.; Xu, T.; Li, Z.; Song, X.; Zhao, X.; Wang, D.; Pan, D. Grazer Effects on Soil Carbon Storage Vary by Herbivore Assemblage in a Semi-arid Grassland. J. Appl. Ecol. 2018, 55, 2517–2526. [Google Scholar] [CrossRef]
- Bielińska, E.J.; Futa, B.; Chmielewski, S.; Patkowski, K.; Gruszecki, T.M. Quantification of Biodiversity Related to the Active Protection of Grassland Habitats in the Eastern Lublin Region of Poland Based on the Activity of Soil Enzymes. Pol. J. Soil Sci. 2017, 50, 55. [Google Scholar] [CrossRef]
- Sach, F.; Dierenfeld, E.S.; Langley-Evans, S.C.; Watts, M.J.; Yon, L. African Savanna Elephants (Loxodonta africana) as an Example of a Herbivore Making Movement Choices Based on Nutritional Needs. PeerJ 2019, 7, e6260. [Google Scholar] [CrossRef]
- Hoogendoorn, C.J.; Betteridge, K.; Ledgard, S.F.; Costall, D.A.; Park, Z.A.; Theobald, P.W. Nitrogen Leaching from Sheep-, Cattle- and Deer-Grazed Pastures in the Lake Taupo Catchment in New Zealand. Anim. Prod. Sci. 2011, 51, 416. [Google Scholar] [CrossRef]
- Shao, G.; Ai, J.; Sun, Q.; Hou, L.; Dong, Y. Soil Quality Assessment under Different Forest Types in the Mount Tai, Central Eastern China. Ecol. Indic. 2020, 115, 106439. [Google Scholar] [CrossRef]
- Li, W.; Huang, H.Z.; Zhang, Z.N.; Wu, G.L. Effects of Grazing on the Soil Properties and C and N Storage in Relation to Biomass Allocation in an Alpine Meadow. J. Soil Sci. Plant Nutr. 2011, 11, 27–39. [Google Scholar] [CrossRef]
- Galindo, F.S.; Delate, K.; Heins, B.; Phillips, H.; Smith, A.; Pagliari, P.H. Cropping System and Rotational Grazing Effects on Soil Fertility and Enzymatic Activity in an Integrated Organic Crop-Livestock System. Agronomy 2020, 10, 803. [Google Scholar] [CrossRef]
- Frost, P.S.D.; van Es, H.M.; Rossiter, D.G.; Hobbs, P.R.; Pingali, P.L. Soil Health Characterization in Smallholder Agricultural Catchments in India. Appl. Soil Ecol. 2019, 138, 171–180. [Google Scholar] [CrossRef]
- Dick, W.A.; Cheng, L.; Wang, P. Soil Acid and Alkaline Phosphatase Activity as PH Adjustment Indicators. Soil Biol. Biochem. 2000, 32, 1915–1919. [Google Scholar] [CrossRef]
- Deng, J.; Chong, Y.; Zhang, D.; Ren, C.; Zhao, F.; Zhang, X.; Han, X.; Yang, G. Temporal Variations in Soil Enzyme Activities and Responses to Land-Use Change in the Loess Plateau, China. Appl. Sci. 2019, 9, 3129. [Google Scholar] [CrossRef]
- Siwik-Ziomek, A.; Lemanowicz, J. The Influence of Fertilization with Phosphorus, Sulphate, Carbon and Nitrogen Content on Hydrolases Activities in Soil. Pol. J. Soil Sci. 2017, 49, 49. [Google Scholar] [CrossRef]
- Samuel, S.D.; Brejea, R.; Domuta, C.; Bungau, S.; Cenusa, N.; Tit, D.M. Enzymatic Indicators of Soil Quality. J. Environ. Prot. Ecol. 2017, 18, 871–878. [Google Scholar]
- Lemanowicz, J. Dynamics of Phosphorus Content and the Activity of Phosphatase in Forest Soil in the Sustained Nitrogen Compounds Emissions Zone. Environ. Sci. Pollut. Res. 2018, 25, 33773–33782. [Google Scholar] [CrossRef]
- Liu, J.; Li, F.Y.; Liu, J.; Wang, S.; Liu, H.; Ding, Y.; Ji, L. Grazing Promotes Soil Phosphorus Cycling by Enhancing Soil Microbial Functional Genes for Phosphorus Transformation in Plant Rhizosphere in a Semi-Arid Natural Grassland. Geoderma 2023, 430, 116303. [Google Scholar] [CrossRef]
- Qin, Y.; Niu, D.; Kang, J.; Zhou, Y.; Li, X. Effects of Livestock Exclusion on Soil Physical and Biochemical Properties of a Desert Rangeland. Pol. J. Environ. Stud. 2015, 24, 2587–2595. [Google Scholar] [CrossRef] [PubMed]
Feature | Summer Sown Pen (SS) | Summer Pen (SP) | Winter Pen (WP) | Control Area (CP) | ||||
---|---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | |||
Area (in ha) | 9.15 | - | 4.50 | - | 9.50 | - | 9.0 | |
Period of stay of animals | April–November | April–November | December–March | N/A | ||||
Animal density (in pcs ha−1) | 12.00 | - | 2.00 | - | 12.00 | - | N/A | |
Body mass of fallow deer (in kg) | before grazing | 64.50 | 4.68 | 29.50 | 4.85 | 31.00 | 5.23 | N/A |
after grazing | 93.9 | 3.11 | 93.9 | 3.11 | 42.00 | 5.63 | N/A |
Enzymes | EC | Abbreviation | Substrate | Reaction Product | Wavelength | Unit | References |
---|---|---|---|---|---|---|---|
Dehydrogenses | 1.1 | DEH | 2.3.5-triphenyltetrazolium chloride (TTC) | triphenyl formazane (TPF) | λ = 485 | mg TPF kg−1 24 h−1 | [62] |
Acid Phosphatase | 3.1.3.2 | AcPH | p-nitrophenyl phosphate disodium | p-nitrophenol (PNP) | λ = 410 | mmol PNP kg−1 h−1 | [63] |
Alkaline Phosphatase | 3.1.3.1 | AlPH | |||||
Urease | 3.5.1.5 | URE | urea | N-NH4+ | λ = 410 | mg N-NH4+ kg−1 h−1 | [64] |
Plot | Season | pH (KCl) | TOC | TN | C:N | N-NH4 + | N-NO3− |
---|---|---|---|---|---|---|---|
g kg−1 | mg kg−1 | ||||||
SS | Summer | 4.15 | 33.38 ± 0.74 a | 3.42 ± 0.02 a | 9.76 | 25.08 ± 0.80 a | 116.54 ± 0.47 a |
Autumn | 4.03 | 24.34 ± 0.94 b | 2.25 ± 0.02 b | 10.80 | 17.81 ± 0.77 b | 61.10 ± 0.66 b | |
M | 4.09 | 28.86 ± 0.62 A | 2.83 ± 0.01 B | 10.28 | 21.44 ± 0.68 B | 88.82 ± 0.14 C | |
SP | Summer | 4.92 | 30.44 ± 0.19 a | 3.32 ± 0.02 a | 9.17 | 23.66 ± 1.05 a | 193.16 ± 0.32 a |
Autumn | 4.81 | 23.77 ± 0.07 b | 2.27 ± 0.01 b | 10.48 | 20.11 ± 2.63 a | 80.22 ± 0.68 b | |
M | 4.87 | 27.11 ± 0.08 A | 2.79 ± 0.02 C | 9.83 | 21.88 ± 1.77 B | 136.69 ± 0.50 A | |
WP | Summer | 4.33 | 27.30 ± 0.48 a | 2.83 ± 0.03 a | 9.65 | 28.50 ± 1.25 a | 186.84 ± 0.64 a |
Autumn | 4.42 | 20.80 ± 0.33 b | 2.05 ± 0.03 b | 10.14 | 25.29 ± 0.76 b | 87.27 ± 0.50 b | |
M | 4.38 | 24.05 ± 0.33 B | 2.44 ± 0.02 D | 9.90 | 26.90 ± 0.66 A | 137.06 ± 0.36 A | |
CP | Summer | 4.96 | 38.63 ± 0.49 a | 4.01 ± 0.05 a | 9.63 | 22.20 ± 0.76 a | 184.70 ± 0.94 a |
Autumn | 5.18 | 21.43 ± 0.89 b | 2.09 ± 0.01 b | 10.27 | 16.88 ± 1.35 b | 60.75 ± 0.14 b | |
M | 5.07 | 30.03 ± 0.46 A | 3.05 ± 0.03 A | 9.95 | 19.54 ± 0.96 B | 122.72 ± 0.43 B |
Plot | Season | P | Mg | K | Ca | Na |
---|---|---|---|---|---|---|
mg kg−1 | ||||||
SS | Summer | 307.0 ± 0.71 a | 1982.5 ± 23.66 a | 3041.7 ± 30.91 a | 1344.2 ± 11.05 a | 171.3 ± 1.89 a |
Autumn | 282.5 ± 0.05 b | 1867.5 ± 2.58 b | 2785.0 ± 10.80 b | 1147.5 ± 9.65 b | 172.3 ± 0.62 a | |
M | 294.7 ± 0.34 B | 1925.0 ± 11.36 A | 2913.3 ± 17.36 A | 1245.8 ± 5.95 C | 171.8 ± 1.05 A | |
SP | Summer | 316.8 ± 1.70 a | 1910.8 ± 14.46 a | 2495.0 ± 8.16 a | 1682.5 ± 8.26 a | 174.0 ± 2.12 a |
Autumn | 266.8 ± 1.55 b | 1380.8 ± 11.96 b | 2028.3 ± 4.71 b | 1220.8 ± 7.98 b | 162.2 ± 1.25 b | |
M | 291.8 ± 0.12 C | 1645.8 ± 13.11 B | 2261.7 ± 2.36 B | 1451.7 ± 7.77 B | 168.1 ± 1.59 AB | |
WP | Summer | 270.8 ± 0.62 a | 709.1 ± 2.30 a | 1583.3 ± 13.12 a | 620.8 ± 9.33 a | 136.8 ± 1.18 a |
Autumn | 313.5 ± 0.82 b | 672.5 ± 6.00 b | 1018.3 ± 8.50 b | 767.5 ± 19.06 b | 132.0 ± 1.08 b | |
M | 292.2 ± 0.72 C | 690.8 ± 3.88 D | 1300.8 ± 3.12 C | 694.2 ± 14.10 D | 134.4 ± 1.12 C | |
CP | Summer | 471.7 ± 0.94 a | 1259.1 ± 11.50 a | 841.7 ± 8.50 a | 1595.8 ± 6.74 a | 156.8 ± 1.93 a |
Autumn | 473.3 ± 0.47 a | 1427.5 ± 5.94 b | 1558.3 ± 2.36 b | 1784.2 ± 11.35 b | 175.7 ± 1.18 b | |
M | 472.5 ± 0.41 A | 1343.3 ± 8.61 C | 1200.0 ± 4.08 D | 1690.0 ± 9.03 A | 166.3 ± 1.43 B |
Plot | Season | Pav | Mgav | Kav |
---|---|---|---|---|
mg kg−1 | ||||
SS | Summer | 10.81 ± 0.11 a | 70.06 ± 0.12 a | 138.13 ± 0.12 a |
Autumn | 17.07 ± 0.30 b | 62.39 ± 0.13 b | 121.47 ± 1.68 b | |
M | 13.94 ± 0.20 B | 66.22 ± 0.03 A | 129.80 ± 0.64 B | |
SP | Summer | 14.78 ± 0.36 a | 60.99 ± 0.05 a | 61.83 ± 0.12 a |
Autumn | 13.12 ± 0.14 b | 54.42 ± 0.12 b | 165.80 ± 1.59 b | |
M | 13.95 ± 0.25 B | 57.71 ± 0.03 C | 113.82 ± 0.82 C | |
WP | Summer | 16.76 ± 0.09 a | 29.06 ± 0.10 a | 210.13 ± 0.48 a |
Autumn | 29.98 ± 0.31 b | 33.76 ± 0.13 b | 280.47 ± 2.09 b | |
M | 23.37 ± 0.20 A | 31.41 ± 0.04 D | 245.30 ± 0.86 A | |
CP | Summer | 16.50 ± 0.23 a | 60.56 ± 0.08 a | 62.97 ± 0.09 a |
Autumn | 30.11 ± 0.16 b | 67.72 ± 0.20 b | 50.23 ± 0.25 b | |
M | 23.31 ± 0.04 A | 64.14 ± 0.13 B | 56.60 ± 0.16 D |
TOC | TN | C:N | N-NO3− | Ca | K | Mg | Na | P | Kav | Mgav | ADh | APhac | APhal | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TOC | 1.00 | 0.99 *** | −0.64 | 0.71 * | 0.34 | 0.04 | 0.30 | 0.16 | 0.28 | −0.44 | 0.33 | −0.10 | 0.03 | −0.17 |
TN | 1.00 | −0.75 ** | 0.79 * | 0.34 | 0.02 | 0.27 | 0.13 | 0.27 | −0.43 | 0.27 | −0.03 | 0.10 | −0.09 | |
C:N | 1.00 | −0.90 * | −0.20 | 0.09 | 0.00 | 0.10 | −0.14 | 0.21 | 0.08 | −0.28 | −0.37 | −0.28 | ||
N-NO3− | 1.00 | 0.02 | −0.18 | −0.12 | −0.23 | 0.05 | −0.16 | −0.23 | 0.13 | 0.13 | 0.19 | |||
Ca | 1.00 | 0.14 | 0.65 | 0.82 ** | 0.67 | −0.92 * | 0.86 * | −0.23 | −0.08 | −0.44 | ||||
K | 1.00 | 0.82 ** | 0.64 | −0.52 | −0.21 | 0.51 | 0.46 | 0.45 | 0.47 | |||||
Mg | 1.00 | 0.92* | −0.01 | −0.66 | 0.88 * | 0.21 | 0.25 | 0.03 | ||||||
Na | 1.00 | 0.24 | −0.83 * | 0.94 ** | −0.07 | 0.01 | −0.19 | |||||||
P | 1.00 | −0.62 | 0.41 | −0.71 | −0.54 | −0.83 * | ||||||||
Kav | 1.00 | −0.81 * | 0.39 | 0.30 | 0.49 | |||||||||
Mgav | 1.00 | −0.17 | −0.01 | −0.35 | ||||||||||
ADh | 1.00 | 0.92 ** | 0.85 ** | |||||||||||
APhac | 1.00 | 0.82 * | ||||||||||||
APhal | 1.00 |
PCA 1 | PCA 2 | PCA 3 | |
---|---|---|---|
ADh | −0.50 | −0.82 | 0.07 |
APhac | −0.57 | −0.73 | 0.12 |
APhal | −0.51 | −0.81 | −0.07 |
AU | 0.09 | −0.72 | 0.60 |
N-NH4+ | −0.80 | −0.14 | −0.42 |
N-NO3− | −0.86 | 0.35 | 0.11 |
TOC | −0.68 | 0.49 | 0.03 |
TN | −0.76 | 0.45 | 0.09 |
C:N | 0.90 | −0.21 | −0.24 |
pHKCl | 0.08 | 0.35 | 0.86 |
Area | 0.13 | 0.63 | 0.25 |
Season | 0.90 | −0.36 | 0.04 |
% of total variance | 40.9 | 33.4 | 13.9 |
Cumulative % | 40.9 | 74.4 | 88.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Futa, B.; Ukalska-Jaruga, A.; Tajchman, K.; Janiszewski, P.; Pecio, M. Variability in Nutrient Content and Biochemical Parameters of Soil Under Rotational Pasture Management of Farmed Fallow Deer. Agriculture 2024, 14, 2011. https://doi.org/10.3390/agriculture14112011
Futa B, Ukalska-Jaruga A, Tajchman K, Janiszewski P, Pecio M. Variability in Nutrient Content and Biochemical Parameters of Soil Under Rotational Pasture Management of Farmed Fallow Deer. Agriculture. 2024; 14(11):2011. https://doi.org/10.3390/agriculture14112011
Chicago/Turabian StyleFuta, Barbara, Aleksandra Ukalska-Jaruga, Katarzyna Tajchman, Paweł Janiszewski, and Monika Pecio. 2024. "Variability in Nutrient Content and Biochemical Parameters of Soil Under Rotational Pasture Management of Farmed Fallow Deer" Agriculture 14, no. 11: 2011. https://doi.org/10.3390/agriculture14112011
APA StyleFuta, B., Ukalska-Jaruga, A., Tajchman, K., Janiszewski, P., & Pecio, M. (2024). Variability in Nutrient Content and Biochemical Parameters of Soil Under Rotational Pasture Management of Farmed Fallow Deer. Agriculture, 14(11), 2011. https://doi.org/10.3390/agriculture14112011