跳转到内容

牛頓-寇次公式

本页使用了标题或全文手工转换
维基百科,自由的百科全书

數值分析上,梯形法則辛卜生法則均是數值積分的方法。它們都是計算定積分的。

這兩種方法都屬於牛頓-寇次公式。它們以函數於等距點的值,取得一個次的多項式來近似原來的函數,再行求積。

梯形法則

[编辑]
原函數(藍色)近似為紅色的線性函數
多重梯形法則

梯形法則是:

這等同將被積函數近似為直線函數,被積的部分近似為梯形

要求得較準確的數值,可以將要求積的區間分成多個小區間,再個別估計,即:

可改寫成

其中

辛普森法则

[编辑]

辛普森法则(Simpson's rule,又稱森遜法則)是:

同樣地,辛普森法则也有多重的版本:

或寫成

牛頓-寇次公式

[编辑]

牛頓-寇次公式(Newton-Cotes rule / Newton-Cotes formula)以Roger Cotes和艾薩克·牛頓命名。其內容是:

其中對是常數(由的值決定),

梯形法則和辛卜生法則便是的情況。

亦有不採用在邊界點來估計的版本,即取

原理

[编辑]
  • 假設已知的值。
  • 點進行插值,求得對應拉格朗日多項式
  • 對該次的多項式求積。

該積分便可以作為的近似,而由於該拉格朗日多項式的係數都是常數(由決定其值),所以積函數的係數(即)都是常數。

缺點

[编辑]

對於次數較高的多項式而有很大誤差(龍格現象),不如高斯積分法

例子

[编辑]

下表中

精度 名稱 公式 誤差
1 梯形法則
2 辛卜生法則
3 辛卜生3/8法則
辛卜生第二法則
4 保爾法則
(Boole's rule
/ Bode's rule)
不用界點的
0 中點法
1
2
3

參考

[编辑]
  • M. Abramowitz and I. A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. (See Section 25.4.)
  • George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler. Computer Methods for Mathematical Computations. Englewood Cliffs, NJ: Prentice-Hall, 1977. (See Section 5.1.)
  • William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling. Numerical Recipes in C. Cambridge, UK: Cambridge University Press, 1988. (See Section 4.1.)
  • Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis. New York: Springer-Verlag, 1980. (See Section 3.1.)

外部連結

[编辑]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy