跳转到内容

牛顿-柯特斯公式

本页使用了标题或全文手工转换
维基百科,自由的百科全书

数值分析上,梯形法则辛普森法则均是数值积分的方法。它们都是计算定积分的。

这两种方法都属于牛顿-柯特斯公式。它们以函数于等距点的值,取得一个次的多项式来近似原来的函数,再行求积。

梯形法则

[编辑]
原函数(蓝色)近似为红色的线性函数
多重梯形法则

梯形法则是:

这等同将被积函数近似为直线函数,被积的部分近似为梯形

要求得较准确的数值,可以将要求积的区间分成多个小区间,再个别估计,即:

可改写成

其中

辛普森法则

[编辑]

辛普森法则(Simpson's rule,又称森逊法则)是:

同样地,辛普森法则也有多重的版本:

或写成

牛顿-柯特斯公式

[编辑]

牛顿-柯特斯公式(Newton-Cotes rule / Newton-Cotes formula)以Roger Cotes和艾萨克·牛顿命名。其内容是:

其中对是常数(由的值决定),

梯形法则和辛普森法则便是的情况。

亦有不采用在边界点来估计的版本,即取

原理

[编辑]
  • 假设已知的值。
  • 点进行插值,求得对应拉格朗日多项式
  • 对该次的多项式求积。

该积分便可以作为的近似,而由于该拉格朗日多项式的系数都是常数(由决定其值),所以积函数的系数(即)都是常数。

缺点

[编辑]

对于次数较高的多项式而有很大误差(龙格现象),不如高斯积分法

例子

[编辑]

下表中

精度 名称 公式 误差
1 梯形法则
2 辛普森法则
3 辛普森3/8法则
辛普森第二法则
4 保尔法则
(Boole's rule
/ Bode's rule)
不用界点的
0 中点法
1
2
3

参考

[编辑]
  • M. Abramowitz and I. A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. (See Section 25.4.)
  • George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler. Computer Methods for Mathematical Computations. Englewood Cliffs, NJ: Prentice-Hall, 1977. (See Section 5.1.)
  • William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling. Numerical Recipes in C. Cambridge, UK: Cambridge University Press, 1988. (See Section 4.1.)
  • Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis. New York: Springer-Verlag, 1980. (See Section 3.1.)

外部链接

[编辑]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy