Evaluation of the Use of Sub-Pixel Offset Tracking Techniques to Monitor Landslides in Densely Vegetated Steeply Sloped Areas
Abstract
:1. Introduction
2. Study Site
3. Data and Methods
3.1. Data
3.2. Methods: Sub-Pixel Offset Tracking (sPOT) Techniques
- For each data stack (2009–2010 and 2012–2013), the first acquisition was used as the master image. All the slave images were co-registered with respect to the same master to sub-pixel accuracy. Topographic distortions were modeled using a reference DEM (SRTM 1 arc-second global DEM) and precise orbital data and subtracted before the cross-correlation.
- Time series histograms of the range/azimuth deformation fields are plotted for the measurements derived on the landslide blocks and the measurements on the stable ground respectively.
- To correct the centroid shifts (mainly caused by the impact of vegetation) on every histogram, the time series histograms of the measurements from stable ground were all fitted by Gaussian functions. The centroid location of every Gaussian peak was taken as a reference to correct the centroid offsets for the corresponding histograms of range/azimuth offsets of the landslide area.
- From the change in histograms, the temporal evolution of the landslide is shown and the active period of the landslide can be identified, as well as the deformation scale.
- Using a correlation coefficient of 0.25 as the threshold, all pixels with correlation above this value are plotted to show the spatial distribution of azimuth and slant range offsets occurred in February 2009–April 2010 and January 2012–February 2013. The two maps can be plotted for each salve acquisition date in the data stack.
4. Results
4.1. Time Series Landslide Rates Derived from Corner Reflectors (CRs) Using Sub-Pixel Offset Tracking
4.2. The Correlation Between the Landslide Deformation and Water Level Variations
4.3. Assessment of Using Natural Scatterers with sPOT Techniques to Monitor Landslide Movement in Densely Vegetated Terrain
4.4. Statistical Analysis Combined with sPOT for General Use in Landslide Monitoring in Densely Vegetated Areas
5. Discussion
5.1. Performance Assessment of sPOT on Vegetated Surface
5.2. Accuracy Assessment of Sub-Pixel Offset Tracking (sPOT)
5.3. Validation of Derived Shuping Landslide Rates
5.4. Landslide Mechanism Inferred From This Study
5.5. Potential and Limitations of sPOT to Monitor Landslides in Densely Vegetated Areas
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liao, M.; Tang, J.; Wang, T.; Balz, T.; Zhang, L. Landslide monitoring with high-resolution sar data in the Three Gorges Region. Sci. China Earth Sci. 2012, 55, 590–601. [Google Scholar] [CrossRef]
- Wang, Z.H. Remote sensing in the preparatory work of China’s hydropower construction. Remote Sens. Land Resour. 1995, 7, 1–8. [Google Scholar]
- Perski, Z.; Wojciechowski, T.; Borkowski, A. Persistent scatterer sar interferometry applications on landslides in carpathians (Southern Poland). Acta Geodyn. Geomater. 2010, 7, 1–7. [Google Scholar]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Engelhardt, H.; Kamb, B.; Frolich, R.M. Satellite radar interferometry for monitoring ice sheet motion: Application to an antarctic ice stream. Science 1993, 262, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P. On the derivation of coseismic displacement fields using differential radar interferometry: The landers earthquake. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, Pasadena, CA, USA, 8–12 August 1994; pp. 286–288.
- Shan, X.; Ma, J.; Wang, C.; Liu, J.; Song, X.; Zhang, G. Co-seismic ground deformation and source parameters of Mani M7.9 earthquake inferred from spaceborne D-InSAR observation data. Sci. China Earth Sci. 2004, 47, 481–488. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Tomas, R.; Herrera, G.; Lopez-Sanchez, J.M.; Vicente, F.; Cuenca, A.; Mallorquí, J.J. Study of the land subsidence in Orihuela city (SE Spain) using PSI data: Distribution, evolution and correlation with conditioning and triggering factors. Eng. Geol. 2010, 115, 105–121. [Google Scholar] [CrossRef]
- Milillo, P.; Fielding, E.J.; Shulz, W.H.; Delbridge, B.; Burgmann, R. Cosmo-skymed spotlight interferometry over rural areas: The slumgullion landslide in colorado, USA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2919–2926. [Google Scholar] [CrossRef]
- Liu, D.; Shao, Y.; Liu, Z.; Riedel, B.; Sowter, A.; Niemeier, W.; Bian, Z. Evaluation of InSAR and TomoSAR for monitoring deformations caused by mining in a mountainous area with high resolution satellite-based SAR. Remote Sens. 2014, 6, 1476–1495. [Google Scholar] [CrossRef]
- Fernández, J.; Romero, R.; Carrasco, D.; Luzón, F.; Araña, V. InSAR volcano and seismic monitoring in Spain. Results for the period 1992–2000 and possible interpretations. Opt. Lasers Eng. 2002, 37, 285–297. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004. [Google Scholar] [CrossRef]
- Ferretti, A.; Savio, G.; Barzaghi, R.; Borghi, A.; Musazzi, S.; Novali, F.; Prati, C.; Rocca, F. Submillimeter accuracy of InSAR time series: Experimental validation. IEEE Trans. Geosci. Remote Sensi. 2007, 45, 1142–1153. [Google Scholar] [CrossRef]
- Lundgren, P.; Usai, S.; Sansosti, E.; Lanari, R.; Tesauro, M.; Fornaro, G.; Berardino, P. Modeling surface deformation observed with synthetic aperture radar interferometry at Campi Flegrei Caldera. J. Geophys. Res. Solid Earth 2001, 106, 19355–19366. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Muller, J.; Zeng, Q.; Li, Z.; Liu, J.; Austin, N.; Brown, D.; Nightingale, M.; Zhang, J.; Gong, L.; Ouyang, Z. Dragon Project 2558: Exploitation of SAR and optical imagery for monitoring the environmental impacts of the Three Gorges Dam. In Proceedings of the 2008 Dragon Symposium, Beijing, China, 21–25 April 2008.
- Singleton, A.; Li, Z.; Hoey, T.; Muller, J.P. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens. Environ. 2014, 147, 133–144. [Google Scholar] [CrossRef]
- Fu, W.; Guo, H.; Tian, Q.; Guo, X. Landslide monitoring by corner reflectors differential interferometry SAR. Int. J. Remote Sens. 2010, 31, 6387–6400. [Google Scholar] [CrossRef]
- Xia, Y. Synthetic aperture radar interferometry. In Sciences of Geodesy I: Advances and Future Directions; Xu, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 415–474. [Google Scholar]
- Wang, F.; Yin, Y.; Huo, Z.; Zhang, Y.; Wang, G.; Ding, R. Slope deformation caused by water-level variation in the Three Gorges Reservoir, China. In Landslides: Global Risk Preparedness; Sassa, K., Rouhban, B., Briceño, S., McSaveney, M., He, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 227–237. [Google Scholar]
- Chen, C.W.; Zebker, H.A. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms. J. Opt. Soc. Am. A 2000, 17, 401–414. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides: Investigation and Mitigation; Transportation Research Board: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Longoni, L.; Papini, M.; Brambilla, D.; Arosio, D.; Zanzi, L. The role of the spatial scale and data accuracy on deep-seated gravitational slope deformation modeling: The Ronco Landslide, Italy. Geomorphology 2016, 253, 74–82. [Google Scholar] [CrossRef]
- Brückl, E.; Brunner, F.; Lang, E.; Mertl, S.; Müller, M.; Stary, U. The gradenbach observatory—Monitoring deep-seated gravitational slope deformation by geodetic, hydrological, and seismological methods. Landslides 2013, 10, 815–829. [Google Scholar] [CrossRef]
- Michel, R.; Avouac, J.P.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the landers earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [Google Scholar] [CrossRef]
- Kääb, A. Monitoring high-mountain terrain deformation from repeated air and spaceborne optical data: Examples using digital aerial imagery and ASTER data. ISPRS J. Photogramm. Remote Sens. 2002, 57, 39–52. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Tanaka, S.; Odajima, T.; Kamai, T.; Tsuchida, S. Detection of a landslide movement as geometric misregistration in image matching of SPOT HRV data of two different dates. Int. J. Remote Sens. 2003, 24, 3523–3534. [Google Scholar] [CrossRef]
- Delacourt, C.; Allemand, P.; Casson, B.; Vadon, H. Velocity field of the “la clapière” landslide measured by the correlation of aerial and quickbird satellite images. Geophys. Res. Lett. 2004. [Google Scholar] [CrossRef]
- Wangensteen, B.; Guðmundsson, Á.; Eiken, T.; Kääb, A.; Farbrot, H.; Etzelmüller, B. Surface displacements and surface age estimates for creeping slope landforms in Northern and Eastern Iceland using digital photogrammetry. Geomorphology 2006, 80, 59–79. [Google Scholar] [CrossRef]
- Debella-Gilo, M.; Kääb, A. Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sens. Environ. 2011, 115, 130–142. [Google Scholar] [CrossRef]
- Bennett, G.; Roering, J.; Mackey, B.; Handwerger, A.; Schmidt, D.; Guillod, B. Historic drought puts the brakes on earthflows in Northern California. Geophys. Res. Lett. 2016. [Google Scholar] [CrossRef]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C.L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef]
- Casu, F.; Manconi, A.; Pepe, A.; Lanari, R. Deformation time-series generation in areas characterized by large displacement dynamics: The SAR amplitude pixel-offset SBAS technique. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2752–2763. [Google Scholar] [CrossRef]
- Casu, F.; Manconi, A. Four-dimensional surface evolution of active rifting from spaceborne SAR data. Geosphere 2016, 12, 697–705. [Google Scholar] [CrossRef]
- Manconi, A.; Casu, F.; Ardizzone, F.; Bonano, M.; Cardinali, M.; De Luca, C.; Gueguen, E.; Marchesini, I.; Parise, M.; Vennari, C.; et al. Brief communication: Rapid mapping of landslide events: The 3 December 2013 montescaglioso landslide, Italy. Nat. Hazards Earth Syst. Sci. 2014, 14, 1835–1841. [Google Scholar] [CrossRef]
- Elefante, S.; Manconi, A.; Bonano, M.; De Luca, C.; Casu, F. Three-dimensional ground displacements retrieved from SAR data in a landslide emergency scenario. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, USA, 13–18 July 2014; pp. 2400–2403.
- Raspini, F.; Ciampalini, A.; Del Conte, S.; Lombardi, L.; Nocentini, M.; Gigli, G.; Ferretti, A.; Casagli, N. Exploitation of amplitude and phase of satellite SAR images for landslide mapping: The case of Montescaglioso (South Italy). Remote Sens. 2015, 7, 14576–14596. [Google Scholar] [CrossRef]
- Li, X. The Application of Sub-Pixel Correlation on the Measurement of Landslide Deformation—Taking the Shuping Landslide as an Example. Ph.D. Thesis, Peking University, Beijing, China, 2011. [Google Scholar]
- Monserrat, O.; Moya, J.; Luzi, G.; Crosetto, M.; Gili, J.A.; Corominas, J. Non-interferometric GB-SAR measurement: Application to the vallcebre landslide (Eastern Pyrenees, Spain). Nat. Hazards Earth Syst. Sci. 2013, 13, 1873–1887. [Google Scholar] [CrossRef]
- Raucoules, D.; De Michele, M.; Malet, J.P.; Ulrich, P. Time-variable 3D ground displacements from high-resolution synthetic aperture radar (SAR). Application to la valette landslide (South French Alps). Remote Sens. Environ. 2013, 139, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Jiao, M.; Song, L.; Wang, J.; Ke, Y.; Zhang, C.; Zhou, T.; Xu, Y.; Jiang, T.; Zhu, C.; Chen, X.; et al. Addressing the potential climate effects of China’s Three Gorges project. Water Energy Int. 2013, 70, 59–60. [Google Scholar]
- Wang, T.; Perissin, D.; Liao, M.; Rocca, F. Deformation monitoring by long term D-InSAR analysis in Three Gorges Area, China. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. IV-5–IV-8.
- Wang, T.; Perissin, D.; Rocca, F.; Liao, M.-S. Three Gorges Dam stability monitoring with time-series InSAR image analysis. Sci. China Earth Sci. 2011, 54, 720–732. [Google Scholar] [CrossRef]
- Müller, B.; Berg, M.; Yao, Z.P.; Zhang, X.F.; Wang, D.; Pfluger, A. How polluted is the Yangtze River? Water quality downstream from the Three Gorges Dam. Sci. Total Environ. 2008, 402, 232–247. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Gao, X.; Giorgi, F.; Chen, Z.; Yu, D. Climate effects of the Three Gorges Reservoir as simulated by a high resolution double nested regional climate model. Quat. Int. 2012, 282, 27–36. [Google Scholar] [CrossRef]
- Xu, K.; Milliman, J.D. Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorphology 2009, 104, 276–283. [Google Scholar] [CrossRef]
- Xu, X.; Tan, Y.; Yang, G.; Li, H.; Su, W. Impacts of China’s Three Gorges Dam project on net primary productivity in the reservoir area. Sci. Total Environ. 2011, 409, 4656–4662. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Shepherd, M. Precipitation changes near Three Gorges Dam, China. Part I: A spatiotemporal validation analysis. J. Hydrol. 2011, 13, 735–745. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Q.; Zhang, Q.; Feng, S. Effects of the Three Gorges Dam on Yangtze River flow and river interaction with Poyang Lake, China: 2003–2008. J. Hydrol. 2012, 416–417, 19–27. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Huo, Z.; Peng, X.; Araiba, K.; Wang, G. Movement of the shuping landslide in the first four years after the initial impoundment of the Three Gorges Dam Reservoir, China. Landslides 2008, 5, 321–329. [Google Scholar] [CrossRef]
- Chen, D.; Xue, G.; Xu, F. Study on the Engineering Geology Properties in Three Gorges; Hubei Science and Technology Publisher: Wuhan, China, 1997. [Google Scholar]
- Sassa, K.; Fukuoka, H.; Wang, F.; Wang, G. Landslides: Risk Analysis and Sustainable Disaster Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Zitova, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef]
- Li, X.; Muller, J.-P.; Fang, C.; Zhao, Y. Measuring displacement field from TerraSAR-X amplitude images by sub-pixel correlation: An application to the landslide in shuping, Three Gorges Area. Acta Petrol. Sin. 2011, 27, 3843–3850. [Google Scholar]
- Leprince, S.; Ayoub, F.; Klingert, Y.; Avouac, J.P. Co-registration of optically sensed images and correlation (COSI-Corr): An operational methodology for ground deformation measurements. In Proceedings of the Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 1943–1946.
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef]
- Ayoub, F.; Leprince, S.; Avouac, J.-P. Co-registration and correlation of aerial photographs for ground deformation measurements. ISPRS J. Photogramm. Remote Sens. 2009, 64, 551–560. [Google Scholar] [CrossRef]
- Xia, Y.; Kaufmann, H.; Guo, X.F. Landslide monitoring in the Three Gorges Area using D-InSAR and corner reflectors. Photogramm. Eng. Remote Sens. 2004, 70, 1167–1172. [Google Scholar]
- Liu, J.G.; Mason, P.J.; Clerici, N.; Chen, S.; Davis, A.; Miao, F.; Deng, H.; Liang, L. Landslide hazard assessment in the Three Gorges Area of the Yangtze river using ASTER imagery: Zigui–Badong. Geomorphology 2004, 61, 171–187. [Google Scholar] [CrossRef]
- Bai, S.-B.; Wang, J.; Lü, G.-N.; Zhou, P.-G.; Hou, S.-S.; Xu, S.-N. Gis-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges Area, China. Geomorphology 2010, 115, 23–31. [Google Scholar] [CrossRef]
- Xu, X.; Tan, Y.; Yang, G. Environmental impact assessments of the Three Gorges project in China: Issues and interventions. Earth-Sci. Rev. 2013, 124, 115–125. [Google Scholar] [CrossRef]
- Sun, L.; Muller, J.-P.; Singleton, A.; Li, Z.; Liu, D.; Riedel, B.; Niemeier, W.; Liang, C.; Zeng, Q.; Jiao, J. Monitoring ground surface displacements in the Three Gorges Area, crustal tectonic movement in Tibet and subsidence in South China. In Proceedings of the Dragon 3Mid Term Results, Chengdu, China, 26–29 May 2015.
- Yun, S.H.; Zebker, H.; Segall, P.; Hooper, A.; Poland, M. Interferogram formation in the presence of complex and large deformation. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- De Zan, F. Accuracy of incoherent speckle tracking for circular gaussian signals. IEEE Geosci. Remote Sens. Lett. 2014, 11, 264–267. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer: New York, NY, USA, 2001. [Google Scholar]
TerraSAR-X High-Resolution Spotlight Data | ||
---|---|---|
Annual time series | 2009–2010 | 2012–2013 |
First acquisition | 21 February 2009 | 2 January 2012 |
Last acquisition | 15 April 2010 | 23 February 2013 |
Satellite orbit heading (°) | 190.552 | 189.617 |
Wavelength (m) | 0.031 | 0.031 |
Incidence angle (°) | 43.690 | 43.602 |
Range pixel spacing (m) | 0.456 | 0.455 |
Azimuth pixel spacing (m) | 0.862 | 0.873 |
Range resolution (m) | 0.851 | 0.852 |
Azimuth resolution (m) | 1.100 | 1.100 |
Common Master | Slave (Perpendicular Baseline) | ||
---|---|---|---|
20090221 | 20090304 (192 m) | 20090315 (125 m) | 20090326 (040 m) |
20090406 (028 m) | 20090417 (080 m) | 20090428 (050 m) | |
20090509 (040 m) | 20090520 (041 m) | 20090531 (051 m) | |
20090611 (052 m) | 20090622 (125 m) | 20090703 (074 m) | |
20090714 (072 m) | 20090725 (137 m) | 20090805 (071 m) | |
20090816 (120 m) | 20090827 (074 m) | 20090907 (040 m) | |
20090918 (156 m) | 20090929 (180 m) | 20091010 (046 m) | |
20091112 (085 m) | 20091123 (017 m) | 20091204 (089 m) | |
20091215 (043 m) | 20091226 (066 m) | 20100106 (105 m) | |
20100117 (145 m) | 20100128 (033 m) | 20100219 (150 m) | |
20100304 (097 m) | 20100313 (220 m) | 20100324 (102 m) | |
20100404 (111 m) | 20100415 (123 m) |
Common Master | Slave (Perpendicular Baseline) | ||
---|---|---|---|
20120102 | 20120113 (035 m) | 20120124 (012 m) | 20120204 (094 m) |
20120215 (074 m) | 20120226 (055 m) | 20120308 (021 m) | |
20120319 (081 m) | 20120330 (029 m) | 20120421 (058 m) | |
20120524 (064 m) | 20120615 (191 m) | 20120820 (183 m) | |
20120922 (083 m) | 20121025 (002 m) | 20121127 (082 m) | |
20130110 (025 m) | 20130121 (040 m) | 20130201 (160 m) | |
20130212 (017 m) | 20130223 (029 m) |
Correlation Window Size | Processing Time |
---|---|
16 × 16 | 30 min |
32 × 32 | 39 min |
64 × 64 | 78 min |
Mean (Pixel) | Std (Pixel) | Max (Pixel) | Min (Pixel) | |
---|---|---|---|---|
Range offset | 5.000 | 0.022 | 5.497 | 4.503 |
Azimuth offset | −8.000 | 0.021 | −7.503 | −8.496 |
Mean Difference (m) | Standard Deviation (m) | RMS Errors (m) | |
---|---|---|---|
Range offset | 0.006 | 0.031 | 0.032 |
Azimuth offset | 0.025 | 0.084 | 0.088 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Muller, J.-P. Evaluation of the Use of Sub-Pixel Offset Tracking Techniques to Monitor Landslides in Densely Vegetated Steeply Sloped Areas. Remote Sens. 2016, 8, 659. https://doi.org/10.3390/rs8080659
Sun L, Muller J-P. Evaluation of the Use of Sub-Pixel Offset Tracking Techniques to Monitor Landslides in Densely Vegetated Steeply Sloped Areas. Remote Sensing. 2016; 8(8):659. https://doi.org/10.3390/rs8080659
Chicago/Turabian StyleSun, Luyi, and Jan-Peter Muller. 2016. "Evaluation of the Use of Sub-Pixel Offset Tracking Techniques to Monitor Landslides in Densely Vegetated Steeply Sloped Areas" Remote Sensing 8, no. 8: 659. https://doi.org/10.3390/rs8080659
APA StyleSun, L., & Muller, J.-P. (2016). Evaluation of the Use of Sub-Pixel Offset Tracking Techniques to Monitor Landslides in Densely Vegetated Steeply Sloped Areas. Remote Sensing, 8(8), 659. https://doi.org/10.3390/rs8080659