An Improved Linear Spectral Emissivity Constraint Method for Temperature and Emissivity Separation Using Hyperspectral Thermal Infrared Data
Abstract
:1. Introduction
2. Methodology
3. Experiments
3.1. Simulated Data
3.2. In Situ Data
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dash, P.; Göttsche, F.M.; Olesen, F.S.; Fischer, H. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. Int. J. Remote Sens. 2002, 23, 2563–2594. [Google Scholar] [CrossRef]
- Gillespie, A.; Cothem, J.; Alley, R.; Kahle, A. In-Scene Atmospheric Characterization and Compensation in Hyperspectral Thermal Infrared Images. In Proceedings of the 7th Jet Propulsion Laboratory Airborne Earth Science Workshop, Pasadena, CA, USA, 12–16 January 1998. [Google Scholar]
- Horton, K.A.; Johnson, J.R.; Lucey, P.G. Infrared Measurements of Pristine and Disturbed Soils 2. Environmental Effects and Field Data Reduction. Remote Sens. Environ. 1998, 64, 47–52. [Google Scholar] [CrossRef]
- Balick, L.; Gillespie, A.; French, A.; Danilina, I.; Allard, J.P.; Mushkin, A. Longwave thermal infrared spectral variability in individual rocks. IEEE Geosci. Remote Sens. Lett. 2009, 6, 52–56. [Google Scholar] [CrossRef]
- Yousefi, B.; Sojasi, S.; Castanedo, C.I.; Beaudoin, G.; Huot, F.; Maldague, X.P.; Chamberland, M.; Lalonde, E. Emissivity Retrieval from Indoor Hyperspectral Imaging of Mineral Grains. In Proceedings of the International Society for Optics and Photonics 2016 (SPIE 2016), Baltimore, MD, USA, 11 May 2016. [Google Scholar]
- Yousefi, B.; Sojasi, S.; Castanedo, C.I.; Maldague, X.P.; Beaudoin, G.; Chamberland, M. Continuum removal for ground based LWIR hyperspectral infrared imagery applying non-negative matrix factorization. Appl. Opt. 2018, 57, 6219–6228. [Google Scholar] [CrossRef]
- Bernard, E.H.; Donald, M.H.; Federico, S.; John, C.M. Determining mineralogical variations of aeolian deposits using thermal infrared emissivity and linear deconvolution methods. Aeolian Res. 2018, 30, 54–96. [Google Scholar]
- Aires, F.; Chédin, A.; Scott, N.A.; Rossow, W.B. A Regularized Neural Net Approach for Retrieval of Atmospheric and Surface Temperatures with the IASI Instrument. J. Appl. Meteorol. 2002, 41, 144–159. [Google Scholar] [CrossRef] [Green Version]
- Blackwell, W.J. A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2535–2546. [Google Scholar] [CrossRef]
- Paul, M.; Aires, F.; Prigent, C.; Trigo, I.F.; Bernardo, F. An innovative physical scheme to retrieve simultaneously surface temperature and emissivities using high spectral infrared observations from IASI. J. Geophys. Res. 2012, 117, D11302. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, J.; Weisz, E.; Zhou, D.K. Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances. Geophys. Res. Lett. 2007, 34, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Masiello, G.; Serio, C. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances. Appl. Opt. 2013, 52, 2428–2446. [Google Scholar] [CrossRef]
- Pivovarník, M.; Khalsa, S.J.S.; Jiménez-Muñoz, J.C.; Zemek, F. Improved temperature and emissivity separation algorithm for multispectral and hyperspectral sensors. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1944–1953. [Google Scholar] [CrossRef]
- Zhong, X.K.; Labed, J.; Zhou, G.; Shao, K.; Li, Z.L. A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images. Sensors 2015, 15, 13406–13423. [Google Scholar] [CrossRef] [Green Version]
- Borel, C.C. Surface Emissivity and Temperature Retrieval for a Hyperspectral Sensor. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 1998 (IGARSS 1998), Seattle, DC, USA, 6–10 July 1998. [Google Scholar]
- Borel, C. Error analysis for a temperature and emissivity retrieval algorithm for hyperspectral imaging data. Int. J. Remote Sens. 2008, 29, 5029–5045. [Google Scholar] [CrossRef]
- Ingram, P.M.; Muse, A.H. Sensitivity of iterative spectrally smooth temperature/emissivity separation to algorithmic assumptions and measurement noise. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2158–2167. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, Q.H.; Li, X.W.; Xiao, Q.; Liu, Q.; Du, Y.M. Correlation-based temperature and emissivity separation algorithm. Sci. China Ser. D Earth Sci. 2008, 51, 357–369. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, X.; Tang, B.; Li, Z.L.; Zhang, R. A New Method for Temperature/Emissivity Separation from Hyperspectral Thermal Infrared Data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 2008 (IGARSS 2008), Boston, MA, USA, 6–11 July 2008. [Google Scholar]
- Cheng, J.; Liang, S.; Wang, J.; Li, X. A stepwise refining algorithm of temperature and emissivity separation for hyperspectral thermal infrared data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1588–1597. [Google Scholar] [CrossRef]
- Wang, N.; Wu, H.; Nerry, F.; Li, C.R.; Li, Z.L. Temperature and Emissivity Retrievals from Hyperspectral Thermal Infrared Data Using Linear Spectral Emissivity Constraint. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1291–1303. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Wu, H.; Jiang, X.G.; Jiang, Y.Z.; Liu, Z.X.; Nerry, F. Land Surface Temperature and Emissivity Retrieval from Field-Measured Hyperspectral Thermal Infrared Data Using Wavelet Transform. Remote Sens. 2017, 9, 454. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Isabel, F.T.; José, A.S. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- ECOSTRESS Spectral Library—Version 1.0. Available online: http://speclib.jpl.nasa.gov/ (accessed on 8 October 2019).
- Widmann, A.; Schröger, E.; Maess, B. Digital filter design for electrophysiological data—A practical approach. J. Neurosci. Methods 2015, 250, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.K. Outliers in process modeling and identification. IEEE Tran. Control Syst. Technol. 2002, 10, 55–63. [Google Scholar] [CrossRef]
- Scott, N.A.; Chedin, A. A fast line-by-line method for atmospheric absorption computations: The Automatized Atmospheric Absorption Atlas. J. Appl. Meteorol. 1981, 20, 802–812. [Google Scholar] [CrossRef] [Green Version]
- Chedin, A.; Scott, N.A.; Claud, C.; Bonnet, B.; Escobar, J.; Dardaillon, S.; Cheruy, F.; Husson, N. Global scale observation of the Earth for climate studies. Adv. Space Res. 1994, 14, 155–159. [Google Scholar] [CrossRef]
- Kanani, K. Utilisation de la très Haute Résolution Spectrale Pour la Mesure en Environnement Extérieur de L’émissivité de Surface dans la Bande Infrarouge 3–13 μm: Méthodes et Validation Expérimentale. Ph.D. Thesis, Université Louis Pasteur Strasbourg I, Strasbourg, France, 2005. [Google Scholar]
- Kanani, K.; Poutier, L.; Nerry, F.; Stoll, M. Directional effects consideration to improve out-doors emissivity retrieval in the 3–13 μm domain. Opt. Express 2007, 15, 12464–12482. [Google Scholar] [CrossRef]
LSEC Method | PES-LSEC Method | |||
---|---|---|---|---|
RMSEε | RMSET (T) | RMSEε | RMSET (T) | |
Red-orange sandy | 6.2 × 10−5 | 5.5 × 10−4 | 4.4 × 10−5 | 3.1 × 10−4 |
Sea water | 1.9 × 10−4 | 1.0 × 10−3 | 8.7 × 10−5 | 5.2 × 10−4 |
Green grass | 2.1 × 10−4 | 8.1 ×10−4 | 1.2 × 10−4 | 3.8 × 10−4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, X.; Zhao, E.; Li, Z.-L.; Labed, J.; Nerry, F. An Improved Linear Spectral Emissivity Constraint Method for Temperature and Emissivity Separation Using Hyperspectral Thermal Infrared Data. Sensors 2019, 19, 5552. https://doi.org/10.3390/s19245552
Lan X, Zhao E, Li Z-L, Labed J, Nerry F. An Improved Linear Spectral Emissivity Constraint Method for Temperature and Emissivity Separation Using Hyperspectral Thermal Infrared Data. Sensors. 2019; 19(24):5552. https://doi.org/10.3390/s19245552
Chicago/Turabian StyleLan, Xinyu, Enyu Zhao, Zhao-Liang Li, Jélila Labed, and Françoise Nerry. 2019. "An Improved Linear Spectral Emissivity Constraint Method for Temperature and Emissivity Separation Using Hyperspectral Thermal Infrared Data" Sensors 19, no. 24: 5552. https://doi.org/10.3390/s19245552
APA StyleLan, X., Zhao, E., Li, Z.-L., Labed, J., & Nerry, F. (2019). An Improved Linear Spectral Emissivity Constraint Method for Temperature and Emissivity Separation Using Hyperspectral Thermal Infrared Data. Sensors, 19(24), 5552. https://doi.org/10.3390/s19245552