Skip to main content
Log in

Evaluation of groundwater vulnerability to pollution using fuzzy analytic hierarchy process method

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Groundwater is the most important source of water supply. But, nowadays the use of groundwater for water supply in the area has been limited by increasing aquifer contamination. In general, this contamination is due to different factors such as rapid urbanization, intensive fertilizer application, industrialization and population. Şuhut Plain (Afyonkarahisar, Turkey) selected to the study area is one of the most important agricultural plains of Turkey where intensive fertilizer and pesticide applications cause the groundwater contamination. Hence, the present study was carried out to develop aquifer vulnerability map for study area using DRASTIC method based on GIS. The rating coefficients of each DRASTIC parameter were determined with the aid of fuzzy analytic hierarchy process (AHP) method and mapped by GIS. In addition, the sensitivity analysis was performed to evaluate the effects of the DRASTIC parameters on the vulnerability map. According to obtained results, the computed DRASTIC vulnerability index is between 0.07902 and 0.29409. Also, groundwater vulnerability map shows that, alluvium unit has very high and high contamination potential which covers 5 and 17 % of the basin, respectively. According to single-parameter sensitivity analysis results, impact of vadose zone and net recharge parameters have the highest effective weights compared with the other parameters. In addition, the soil media parameter has the lowest mean effective weight value with 0.02 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alam J, Daoxian Y, Jiang YJ, Yuchuan S, Yong L, Xin X (2014) Sources and transports of organochlorine pesticides in the Nanshan underground river, China. Environ Earth Sci 71:1977–1987

    Article  Google Scholar 

  • Al-Hanbali A, Kondoh A (2008) Groundwater vulnerability assessment and evaluation of human activity impact (HAI) within the Dead Sea groundwater basin, Jordan. Hydrogeol J16:499–510

    Article  Google Scholar 

  • Aller L, Bennet T, Leher JH, Petty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydro-geological settings. EPA 600/2-87-035:622

  • Almasri MN (2008) Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer, Palestine. J Environ Manage 88:577–593

    Article  Google Scholar 

  • Al-Zabet T (2002) Evaluation of aquifer vulnerability to contamination potential using the DRASTIC method. Environ Geol 43:203–208

    Article  Google Scholar 

  • Anane M, Bouziri L, Limam A, Jellali S (2012) Ranking suitable sites for irrigation with reclaimed water in the Nabeul-Hammamet region (Tunisia) using GIS and AHP-multicriteria decision analysis. Resour Conserv Recy 65:36–46

    Article  Google Scholar 

  • Aryafar A, Yousefi S, Ardejani FD (2013) The weight of interaction of mining activities: groundwater in environmental impact assessment using fuzzy analytical hierarchy process (FAHP). Environ Earth Sci 68(8):2313–2324

    Article  Google Scholar 

  • Attoui B, Kherici N, Kherici H, Kherici-Bousnoubra H (2014) Use of a new method for determining the vulnerability and risk of pollution of major groundwater reservoirs in the region of Annaba-Bouteldja (NE Algeria). Environ Earth Sci 72:891–903

    Article  Google Scholar 

  • Baalousha H (2006) Vulnerability assessment for the Gaza Strip, Palestine using DRASTIC. Environ Geol 50:405–414

    Article  Google Scholar 

  • Babiker IS, Mohammed MAA, Hiyama T, Kato K (2005) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci Total Environ 345:127–140

    Article  Google Scholar 

  • Bagdanaviciute I, Valiunas J (2013) GIS-based land suitability analysis integrating multi-criteria evaluation for the allocation of potential pollution sources. Environ Earth Sci 68:1797–1812

    Article  Google Scholar 

  • Bouyssou D, Marchant T, Pirlot M, Perny P, Tsoukias A, Vincke P (2000) Evaluation models: a critical perspective. Kluwer, Boston

    Book  Google Scholar 

  • Chang DY (1992) Extent analysis and synthetic decision. Optimiz Tech Appl 1:352

    Google Scholar 

  • Chang DY (1996) Applications of the extent analysis method on fuzzy AHP. Eur J Oper Res 95:649–655

    Article  Google Scholar 

  • Chitsazan M, Akhtari Y (2009) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kherran Plain, Khuzestan, Iran. Water Resour Manage 23:1137–1155

    Article  Google Scholar 

  • Civita M (1994) Le carte dellavulnerabilit`adegliacquiferi all’ inquinamiento: teoria e pratica [Contamination vulnerability mapping of the aquifer: theory and practice]. Quaderni di Tecniche di ProtezioneAmbientale, Pitagora

    Google Scholar 

  • Doerfliger N, Zwahlen F (1998) Groundwater vulnerability mapping in karstic regions (EPIK): application to Groundwater Protection Zones. Swiss Agency for the Environment, Forests and Landscape (SAEFL), Switzerland

    Google Scholar 

  • Doerfliger N, Jeannin PY, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39(2):165–176

    Article  Google Scholar 

  • Edet A (2014) An aquifer vulnerability assessment of the Benin formation aquifer, Calabar, southeastern Nigeria, using DRASTIC and GIS approach. Environ Earth Sci 71:1747–1765

    Article  Google Scholar 

  • Farfan H (2010) Evaluación de los recursos hídricos del Parque Nacional Viñales, Cuba. M.Sc Thesis. University of Alcala´

  • Farfan H, Corvea JL, Bustamante I (2014) First outcomes in the definition of groundwater protection zones at the Viñales National Park (Cuba) and surrounding area. Environ Earth Sci 71:3–11

    Article  Google Scholar 

  • Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: van Duijvanbooden W, van Waegeningh HG (eds) Vulnerability of soil and groundwater to pollution, Proceedings and Information No. 38 of the International Conference held in the Netherlands, in 1987, TNO Committee on Hydrological Research

  • Gogu RC, Dassargues A (2000) Sensitivity analysis for the EPIK method of vulnerability assessment in a small karstic aquifer, southern Belgium. Hydrogeol J 8:337–345

    Article  Google Scholar 

  • Goldscheider N, Klute M, Sturm S, Hotzl H (2000) The PI method: a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol 46(3):157–166

    Google Scholar 

  • Gonzalez-Herrera R, Martinez-Santibañez E, Pacheco-Avila J, Cabrera-Sansores A (2014) Leaching and dilution of fertilizers in the Yucatan karstic aquifer. Environ Earth Sci 72(72):2879–2886

    Article  Google Scholar 

  • Guastaldi E, Graziano L, Liali G, Nunzio F, Brogna A, Barbagli A (2014) Intrinsic vulnerability assessment of Saturnia thermal aquifer by means of three parametric methods: SINTACS, GODS and COP. Environ Earth Sci 72:2861–2878

    Article  Google Scholar 

  • Guiqin W, Li Q, Guoxue L, Lijun C (2009) Landfill site selection using spatial information technologies and AHP: a case study in Beijing, China. J Environ Manage 90:2414–2421

    Article  Google Scholar 

  • Hashimoto T, Stedinger JR, Loucks DP (1982) Reliability, resiliency, and vulnerability criteria for water resources system performance evaluation. Water Resour Res 18:14–20

    Article  Google Scholar 

  • Ho W (2008) Integrated analytic hierarchy process and its applications—a literature review. Eur J Oper Res 186:211–228

    Article  Google Scholar 

  • Hrkal Z (2001) Vulnerability of groundwater to acid deposition, Jizerske Mountains, northern Czech Republic: construction and reliability of a GIS-based vulnerability map. Hydrogeol J 9:348–357

    Article  Google Scholar 

  • Jamrah A, Futaisi AA, Rajmohan N, Al-Yaroubi S (2008) Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment. Environ Monit Assess 147:125–138

    Article  Google Scholar 

  • Javadi S, Kavehkar N, Mousavizadeh MH, Mohammadi K (2011) Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas. J Agr Sci Tech 13:239–249

    Google Scholar 

  • Kahraman C, Cebeci U, Ulukan Z (2003) Multi-criteria supplier selection using fuzzy AHP. Logis Inf Manag 16(6):382–394

    Article  Google Scholar 

  • Kahraman C, Cebeci U, Ruan D (2004) Multi-attribute comparison of catering service companies using fuzzy AHP: the case of Turkey. Int J Prod Econ 87:171–184

    Article  Google Scholar 

  • Kalinski RJ, Kelly WE, Bogardi I, Ehrman RL, Yamamoto PO (1994) Correlation between DRASTIC vulnerabilities and incidents of VOC contamination of municipal wells in Nebraska. Ground Water 32(1):31–34

    Article  Google Scholar 

  • Kim Y, Hamm S (1999) Assessment of the potential for groundwater contamination using the DRASTIC/EGIS technique, Cheongju area, South Korea. Hydrogeol J 7:227–235

    Article  Google Scholar 

  • Kogovsek J, Petric M (2013) Increase of vulnerability of karst aquifers due to leakage from landfills. Environ Earth Sci 70:901–912

    Article  Google Scholar 

  • Kong F, Liu H (2005) Applying fuzzy analytic hierarchy process to evaluate success factors of e-commerce. Int J Inform Syst Sci Comput Inform 1(3–4):406–412

    Google Scholar 

  • Lake IR, Lovett AA, Hiscock KM (2003) Evaluating factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS. J Environ Manage 68:315–328

    Article  Google Scholar 

  • Lee S (2003) Evaluation of waste disposal site using the DRASTIC system in Southern Korea. Environ Geol 44:654–664

    Article  Google Scholar 

  • Lee SK, Mogi G, Hui KS (2013) A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R&D resources: in the case of energy technologies against high oil prices. Renew Sust Energ Rev 21:347–355

    Article  Google Scholar 

  • McLay CDA, Dragden R, Sparling G, Selvarajah N (2001) Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environ Pollut 115:191–204

    Article  Google Scholar 

  • Napolitano P, Fabbri AG (1996) Single parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: Kovar K, Nachtnebel HP (eds) Proc HydroGIS: application of geographical information systems in hydrology and water resources management, IAHS Publ. 235, IAHS, Wallingford, UK, pp 559–566

  • Navulur KCS, Engel BA (1998) Groundwater vulnerability assessment to non-point source nitrate pollution on a regional scale using GIS. T Am Soc Agr Eng 41:1671–1678

    Article  Google Scholar 

  • Neshat A, Pradhan B, Pirasteh S, Zulhaidi H, Shafri M (2014) Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ Earth Sci 71:3119–3131

    Article  Google Scholar 

  • Özdağoğlu A, Özdağoğlu G (2007) Comparison of AHP and fuzzy AHP for the multicriteria decision making precess with linguistic elevations. Istanbul Trade Univ J Sci 11:65–85

    Google Scholar 

  • Özgül B (2000) Hydrogeological investigations of Şuhut basin. Suleyman Demirel University, Master thesis, Isparta/Turkey (in Turkish)

  • Panagopoulos GP, Antonakos AK, Lambrakis NJ (2006) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol J 14:894–911

    Article  Google Scholar 

  • Parisi S, Pascale S, Sdao F, Soupios P (2013) Assessment and mapping of the intrinsic vulnerability to pollution: an example from Keritis River Basin (Northwestern crete, Greece). Environ Earth Sci 70:2659–2670

    Article  Google Scholar 

  • Pires A, Chang N, Martinho G (2011) An AHP-based fuzzy interval TOPSIS assessment for sustainable expansion of the solid waste management system in Setúbal Peninsula, Portugal. Resour Conserv Recy 56:7–21

    Article  Google Scholar 

  • Plymale CL, Angle MP (2002) Groundwater pollution potential of Fulton County, Ohio. Ohio Department of natural resources division of water, water resources section. Groundwater Pollution Potential, Report No 4

  • Rahman A (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl Geogr 28:32–53

    Article  Google Scholar 

  • Ruberti D, Vigliotti M, Marzaioli R, Pacifico A, Ermice A (2014) Stratigraphic architecture and anthropic impacts on subsoil to assess the intrinsic potential vulnerability of groundwater: the northeastern Campania Plain case study, southern Italy. Environ Earth Sci 71(1):319–339

    Article  Google Scholar 

  • Rupert MG (1999) Improvements to the DRASTIC groundwater vulnerability mapping method. US Geological Survey Fact Sheet FS-066-99, USGS, Reston, VA, USA

  • Rupert MG (2001) Calibration of the DRASTIC ground water vulnerability mapping method. Ground Water 39(4):625–630

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York, p 287

    Google Scholar 

  • Samake M, Tang Z, Hlaing W, M’Bue I, Kasereka K (2010) Assessment of groundwater pollution potential of the Datong basin, Northern China. J Sustain Dev 3(2):140–152

    Article  Google Scholar 

  • Sendròs A, Diaz Y, Himi M, Tapias C, Rivero L, Font X, Casas A (2014) An evaluation of aquifer vulnerability in two nitrate sensitive areas of Catalonia (NE Spain) based on electrical resistivity methods. Environ Earth Sci 71:77–84

    Article  Google Scholar 

  • Şener E, Davraz A (2012) Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: the case of Egirdir Lake basin (Isparta, Turkey). Hydrogeol J 21(3):701–714

    Google Scholar 

  • Şener E, Şener S, Davraz A (2009) Assessment of aquifer vulnerability based on GIS and DRASTIC methods: a case study of Senirkent–Uluborlu basin (Isparta, Turkey). Hydrogeol J 17:2023–2035

    Article  Google Scholar 

  • Shirazi SM, Imran HM, Akib S, Yusop Z, Harun ZB (2013) Ground water vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques. Environ Earth Sci 70(5):2293–2304

    Article  Google Scholar 

  • Şimşek C, Gündüz O (2007) IWQ index: a GIS-integrated technique to assess irrigation water quality. Environ Monit Assess 128:277–300

    Article  Google Scholar 

  • Tan RR, Aviso KB, Huelgas AP, Promentilla MAB (2013) Fuzzy AHP approach to selection problems in process engineering involving quantitative and qualitative aspects. Process SAF Environ. http://dx.doi.org/10.1016/j.psep.2013.11.005

  • Tesoriero AJ, Inkpen EL, Voss FD (1998) Assessing ground-water vulnerability using logistic regression. In: Proceedings for the Source Water Assessment and Protection 98 Conference, Dallas, TX, pp 157–165

  • Tseng ML, Lin YH, Chiu ASF, Chen CY (2008) Fuzzy AHP approach to TQM strategy evaluation. IEMS 7(1):34–43

    Google Scholar 

  • Van Laarhoven PJM, Pedrycz W (1983) A fuzzy extension of Saaty’s priority theory. Fuzzy Set Syst 11:229–241

    Article  Google Scholar 

  • Van Stempvoort D, Ewert L, Wassenaar L (1993) Aquifer vulnerability index (AVI): a GIS compatible method for groundwater vulnerability mapping. Can Water Resour J 18:25–37

    Article  Google Scholar 

  • Vasanthavigar M, Srinivasamoorthy K, Vijayaragavan K, Rajiv Ganthi R, Chidambaram S, Anandhan P, Manivannan R, Vasudevan S (2010) Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environ Monit Assess 171:595–609

    Article  Google Scholar 

  • Vias JM, Andreo B, Perles MJ, Carrasco F (2005) A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ Geol 47:586–595

    Article  Google Scholar 

  • Vias JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jimenez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Application in two pilot sites in southern Spain. Hydrogeol J 14:912–925

    Article  Google Scholar 

  • Wen X, Wu J, Si J (2009) A GIS-based DRASTIC model for assessing shallow groundwater vulnerability in the Zhangye basin, northwestern China. Environ Geol 57:1435–1442

    Article  Google Scholar 

  • Yin L, Zhang E, Wang X, Wenninger J, Dong J, Guo L, Huang J (2013) A GIS-based DRASTIC model for assessing groundwater vulnerability in the Ordos Plateau, China. Environ Earth Sci 69:171–185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şehnaz Şener.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şener, E., Şener, Ş. Evaluation of groundwater vulnerability to pollution using fuzzy analytic hierarchy process method. Environ Earth Sci 73, 8405–8424 (2015). https://doi.org/10.1007/s12665-014-4001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-4001-3

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy