Jump to content

പരവലയം

വിക്കിപീഡിയ, ഒരു സ്വതന്ത്ര വിജ്ഞാനകോശം.
ഒരു പരാബൊള
പ്രതിഫലത,നിയതരേഖ(പച്ച), നിയതരേഖയേയും ഫോകസിനേയും ബന്ധിപ്പിക്കുന്ന വരകൾ(നീല) എന്നിവ കാണിക്കുന്ന ഒരു ആരേഖം

ദ്വിമാനതലത്തിൽ രചിച്ചിരിക്കുന്ന ഒരുതരം വക്രമാണ് പരവലയം അഥവാ പരാബൊള. ഒരു സമതലത്തിൽ ശയിക്കുന്ന ഒരു രേഖയും , ആ രേഖയിലല്ലാത്ത ഒരു ബിന്ദുവും ഉണ്ടെന്നിരിക്കട്ടെ; ആ രേഖയിൽ നിന്നും (നിയതരേഖ; Directrix) ബിന്ദുവിൽ നിന്നും ( കേന്ദ്രം; focus) ഉള്ള അകലം തുല്യമാകത്തക്കവിധം സഞ്ചരിക്കുന്ന മറ്റൊരു ബിന്ദുവിന്റെ സഞ്ചാരപഥത്തെ ( Locus) ആണ് പരവലയം അല്ലെങ്കിൽ പരാബൊള (Parabola) എന്നു പറയുന്നത്.

ഒരു നേർവൃത്തസ്തൂപികയെ അതിന്റെ ഏതെങ്കിലും ഒരു പാർശ്വരേഖയ്ക് സമാന്തരമായി ഒരു സമതലം ഛേദിക്കുമ്പോൾ ലഭിക്കുന്ന ദ്വിമാനവക്രരൂപവും പരവലയമാണു്. വൃത്തസ്തൂപികയുടെ ശീർഷവും (Vertex) അതിന്റ ആധാരവൃത്തത്തിലെ ഏതെങ്കിലും ഒരു ബിന്ദുവും ബന്ധിപ്പിക്കുന്ന ഋജുരേഖയെയാണ് പാർശ്വരേഖ എന്നു പറയുന്നത്. വൃത്തസ്തൂപികയെ ഛേദിക്കുന്ന തലത്തിന്, അതിന്റെ അക്ഷവുമായുണ്ടാകുന്ന ചരിവ് അനുസരിച്ച്, പല ദ്വിമാനവക്രങ്ങൾ ലഭിക്കുന്നു. വൃത്തം, ദീർഘവൃത്തം, പരവലയം, അതിവലയം എന്നിവയാണവ. എന്നാൽ, ഛേദതലം, പ്രസ്തുത നേർവൃത്തസ്തൂപികയെ ഛേദിക്കാതെ അതിന്റെ വക്രപ്രതലം സ്പർശിക്കുക മാത്രം ചെയ്യുമ്പോൾ, ഒരു ഋജുരേഖയാണ് ലഭിക്കുന്നത്. ഇങ്ങനെ നേർവൃത്തസ്തൂപിക ഛേദിച്ചാൽ കിട്ടുന്ന വക്രങ്ങളെ പൊതുവെ വൃത്തസ്തൂപികാവക്രങ്ങൾ (Conics) എന്നു പറയുന്നു.

ഭൗതികശാസ്ത്രത്തിലും ജ്യോതിശാസ്ത്രത്തിലും സാങ്കേതികവിദ്യാരംഗങ്ങളിലും, മറ്റനവധി ശാസ്ത്രമേഖലകളിലും പരവലയങ്ങൾക്കു് വളരെ പ്രാധാന്യമുണ്ട്.

ഒരു ഗോളത്തിന്റെ ഗുരുത്വാകർഷണത്തിനു വിധേയമായി, ക്ഷേപിക്കപ്പെടുന്ന ഒരു വസ്തുവിന്റെ (എറിയപ്പെടുന്ന ഒരു ക്രിക്കറ്റുപന്ത്, തോക്കിൽ നിന്നു പായുന്ന ഒരു വെടിയുണ്ട മുതലായവ) സഞ്ചാരപഥം പരവലയാകൃതിയിലുള്ളവയാണ്.

വിശ്ലേഷണജ്യാമിതീസമവാക്യങ്ങൾ

[തിരുത്തുക]

ചതുരനിർദ്ദേശാങ്കവ്യവസ്ഥയിൽ അക്ഷത്തിനു സമാന്തരമായതും ശീർഷം ഉം ഫോകസ് ഉം നിയതരേഖ ഉം ദൂരവും ഉള്ള പരവലയത്തിന്റെ സമവാക്യം

ആണ്.

മറ്റൊരു തരത്തിൽ x-അക്ഷത്തിനു സമാന്തരമായ പരവലയത്തിന്റെ സമവാക്യം

ഇപ്രകാരമാണ്‌

പൊതുസമവാക്യം

ഇപ്രകാരമാണ്.

ഇതര ജ്യാമിതീയ നിർ‌വചനങ്ങൾ

[തിരുത്തുക]
നാലുതരം വൃത്തസ്തുപികാവക്രങ്ങൾ

വൃത്തസ്തൂപികാവക്രങ്ങളിൽ, ഏതു ബിന്ദുവിൽ നിന്നും, കേന്ദ്രത്തിലേക്കും, നിയതരേഖയിലേക്കും ഉള്ള ദൂരങ്ങൾ തമ്മിലുള്ള അനുപാതത്തെ വക്രത്തിന്റെ ഉൽകേന്ദ്രത (Eccentricity) എന്നു വിളിക്കുന്നു. അതായത്, വക്രത്തിലെ ഒരു ബിന്ദുവിൽ നിന്നും കേന്ദ്രത്തിലേക്കുള്ള അകലം r എന്നും, അതിൽ നിന്നും നിയതരേഖയിലേക്കുള്ള അകലം s എന്നുമിരിക്കട്ടെ, എങ്കിൽ -

ഉൽകേന്ദ്രത,

പരവലയത്തിന്റെ കാര്യത്തിൽ, മേൽപ്പറഞ്ഞ അകലങ്ങൾ തുല്യമായതിനാൽ, ഉൽകേന്ദ്രത ഒന്ന് ആയിരിക്കും. ഉത്കേന്ദ്രത ഒന്നിൽക്കുറവാണെങ്കിൽ അതു ദീർഘവൃത്തവും (ellipse) , ഒന്നിൽ കൂടുതലാണെങ്കിൽ അത് അതിവലയവും ആയിരിക്കും. ഉത്കേന്ദ്രത പൂജ്യം ആയ വക്രമാണ് വൃത്തം.

ദീർഘവൃത്തങ്ങളുടെ ശ്രേണിയുടെ സീമ എന്ന നിലയിൽ പരവലയത്തെ പരിഗണിക്കാം.ഈ ദീർഘവൃത്തങ്ങളുടെ ഒരു ഫോക്കസ് ഉറപ്പിച്ചും അടുത്ത ഫോക്കസ് ഒരേ ദിശയിൽ തന്നെ അനിയന്ത്രിതമായി നീങ്ങാനും അനുവദിക്കുന്നു.ഇത്തരത്തിൽ പരവലയത്തെ ഒരു ഫോക്കസ് അനന്തതയിൽ കേന്ദ്രീകരിച്ചിരിക്കുന്ന ഒരു ദീർഘവൃത്തമായി പരിഗണിക്കാം.

പരവലയത്തിനു് പ്രതിഫലനപ്രതിസമതയുള്ള ഒരു അക്ഷം ഉണ്ട്. ഈ അക്ഷം അതിന്റെ ഫോക്കസിലൂടെ കടന്നുപോകുന്നു.നിയതരേഖക്ക് ഇത് ലംബവും ആണ്. ഈ അക്ഷത്തിന്റേയും പരവലയത്തിന്റേയും സംഗമബിന്ദുവാണ് പരവലയത്തിന്റെ ശീർഷം.

സമവാക്യങ്ങൾ

[തിരുത്തുക]

ശീർഷം (h, k)ഉം ഫോക്കസും ശീർഷവും തമ്മിലുള്ള ദൂരം pഉം ആയ പരവലയത്തിന്റെ സമവാക്യങ്ങളാണ് താഴെ പ്രസ്താവിക്കുന്നത്.

കാർട്ടീഷ്യൻ

[തിരുത്തുക]

ലംബഅക്ഷത്തിലുള്ള പ്രതിസമത

[തിരുത്തുക]
.

തിരശ്ചീന അക്ഷത്തിലുള്ള പ്രതിസമത

[തിരുത്തുക]
.

പരവലയത്തിന്റെ സാമാന്യരൂപം

[തിരുത്തുക]

പരാബോളയുടെ പൊതുരൂപം

ആണ്

കോണികത്തിന്റെ പൊതുസമവാക്യത്തിൽ നിന്നും നിർ‌വചിച്ചിരിക്കുന്ന പരവലയത്തിന്റെ സമവാക്യം ആണ്‌.

നാഭിലംബം,അർദ്ധനാഭിലംബം,ധ്രുവീയ നിർദ്ദേശാങ്കങ്ങൾ

[തിരുത്തുക]

ധ്രുവീയ നിർദ്ദേശാങ്കത്തിൽ(polar co-ordinates) ഫോകസ് മൂലബിന്ദുവും നിയതരേഖ അക്ഷത്തിനു സമാന്തരവും ആയ പരവലയത്തിന്റെ സമവാക്യം

ആണ്.

l അർദ്ധനാഭീകേന്ദ്രം(semi-latus rectum) ,അതായത് ഫോക്കസിൽ നിന്നും പരവലയത്തിലേക്കുള്ള ദൂരം ആണ്.നാഭീകേന്ദ്രം(latus rectum) ഫോക്കസിലൂടെ കടന്നുപോകുന്ന അക്ഷത്തിനു ലംബമായ ഞാൺ ആണ്.ഇതിന്റെ നീളം 4l ആണ്‌.

ഫോക്കസ്സിന്റെ അനുമാനം

[തിരുത്തുക]
നിയതരേഖ(L),ഫോകസ്(F) എന്നിവ കാണിക്കുന്ന ഒരു പരവലയവക്രം തന്നിരിക്കുന്ന ഒരു ബിന്ദു Pnൽ നിന്നും ഫോക്കസിലേക്കുള്ള ദൂരം Pn ൽ നിന്നും നിയതരേഖയിലുള്ള Qnലേക്കുള്ള ദൂരത്തിനു തുല്യമാണ്.
ഒരു രേഖ(L),ഫോക്കസ്(F),ശീർഷം(V) എന്നിവ ചിത്രീകരിക്കുന്ന പരവലയവക്രം . പ്രതിസമതാ അക്ഷത്തിനു ലംബവും ശീർഷത്തിൽ നിന്നും പരവലയത്തിന്റെ ഫോക്കസ്സിന് വിപരീതവും ആയ നിയമബന്ധിതമല്ലാത്ത ഒരു രേഖയാണ് L.ഏതൊരു രേഖയുടേയും നീളം F - Pn - Qn തുല്യമായിരിക്കും.ഇതുവഴി ഒരു ഫോക്കസ് അനന്തത്തിലായ ഒരു ദീർഘവൃത്തമാണ് പരവലയം എന്ന് പറയാം.

പ്രതിസമത അക്ഷം y-അക്ഷത്തിനു സമാന്തരമായതും ശീർഷം (0,0) ആയതും ആയ ഒരു പരവലയത്തിന്റെ സമവാക്യം

ആണ്.(0,f)എന്ന ബിന്ദു പരവലയത്തിന്റെ ഫോക്കസ് ആണ്. പരവലയത്തിലുള്ള ഏതൊരു ബിന്ദുവും ഫോക്കസിൽ നിന്നും പ്രതിസമതാ അക്ഷത്തിനു ലംബമായ ഒരു രേഖയിൽ നിന്നും(ലീനിയാ നിയതരേഖ)തുല്യ അകലത്തിലായിരിക്കും.ശീർഷം ഇത്തരത്തിലുള്ള ഒരു ബിന്ദുവായതിനാൽ ലീനിയ നിയതരേഖ എന്ന ബിന്ദുവിലൂടേയും കടന്നുപോകുന്നു.അതായത് ഏതൊരു ബിന്ദു P=(x,y)ഉം (0,f)ൽ നിന്നും (x,-f)ൽ നിന്നും തുല്യ അകലത്തിലായിരിക്കും.ഇത്തരമൊരു സവിശേഷതയുള്ള ഫോകസിന്റെ വിലയാണ് കണ്ടുപിടിക്കുന്നത്.

Fഎന്നത് ഫോകസിനേയും Q,(x,-f)എന്ന ബിന്ദുവിനേയും സൂചിപ്പിക്കുന്നു. FP,QP എന്നിവയുടെ നീളം തുല്യമാണ്.

ഇരുവശത്തിന്റേയും വർഗ്ഗം കണ്ടാൽ

ഇരുവശത്തേയും പദങ്ങളെ വെട്ടിക്കളഞ്ഞാൽ

ഇരുവശത്തുനിന്നും x വെട്ടിക്കളഞ്ഞാൽ( xപൂജ്യമാവില്ല)

p=f എന്ന് കരുതിയാൽ പരാബോളയുടെ സമവാക്യം

എന്ന് കിട്ടുന്നു.

മൂലബിന്ദു കേന്ദ്രമായ ഒരു പരാബോളയുടെ സമവാക്യമാണ് മുകളിൽ പ്രതിപാദിച്ചിരിക്കുന്നത്.പരാബോളയുടെ പൊതുരൂപം : ആണ്.ഈ പരാബോളയുടെ ഫോകസ്

ആണ്‌.

ഇതിനെ മറ്റൊരു രീതിയിൽ

ഇങ്ങനേയും എഴുതാം

നിയതരേഖയെ

എന്ന സമവാക്യം കൊണ്ടും സൂചിപ്പിക്കം.ഈ സമവാക്യത്തെ തന്നെ മറ്റൊരു രീതിയിൽ

ഇങ്ങനേയും എഴുതാം.

സ്പർശകത്തിന്റെ പ്രതിഫലനസ്വഭാവം

[തിരുത്തുക]

പരാബോളയുടെ സ്പർശകത്തിന്റെ ചെരിവ് ആണ്.ഈ രേഖ y-അക്ഷത്തിൽ (0,-y) = (0, - a x²) എന്ന ബിന്ദുവിലും x-അക്ഷത്തിൽ (x/2,0) എന്ന ബിന്ദുവിലും സംഗമിക്കുന്നു.ഈ ബിന്ദുവിനെ G എന്ന് വിളിക്കുന്നു.Gഎന്ന ബിന്ദു F ന്റേയുംQന്റേയും മദ്ധ്യബിന്ദു ആണ്.

:

G,FQന്റെ മദ്ധ്യബിന്ദു ആണെന്നതിനാൽ

കൂടാതെ P, Fൽ നിന്നും Qൽ നിന്നും തുല്യ അകലത്തിലാണ്.

മൂന്നാമതായി GP എന്ന രേഖ അതിനോടുതന്നെ സമമായതിനാൽ

ഇതിൽനിന്നും . എന്ന്കിട്ടുന്നു.QP എന്ന രേഖയെ P യിൽ നിന്നും Tഎന്ന ബിന്ദുവിലേക്കും GPഎന്ന രേഖയെ P ൽ നിന്നുംRഎന്ന ബിന്ദുവിലേക്കും നീട്ടിവരക്കാൻ സാധിക്കും.അപ്പോൾ and ലംബങ്ങളായിരിക്കും.ആയതിനാൽ ഇവ സർവസമങ്ങളും ആയിരിക്കും.എന്നാൽ ,സമങ്ങളായതിനാൽ , ഇവയും സമങ്ങളായിരിക്കും.പരാബോളയിലെ Pഎന്ന ബിന്ദുവിലെ സ്പർശകമാണ് RG എന്ന രേഖ.

ഇതും കാണുക

[തിരുത്തുക]

അവലംബം

[തിരുത്തുക]

Encarta Reference Library Premium 2005

"https://ml.wikipedia.org/w/index.php?title=പരവലയം&oldid=1742373" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy