Parabool (wiskunde)
Een parabool is een vlakke tweedegraadskromme die de meetkundige plaats is van punten met dezelfde afstand tot een gegeven lijn, de richtlijn, en een gegeven punt, het brandpunt. De wiskundige vergelijking die een parabool beschrijft, is van de tweede graad. Een parabool kan ook als een kegelsnede worden beschouwd, waarvan het snijvlak evenwijdig is met een beschrijvende van de kegel.
Parabool komt van het Griekse παραβολή, vergelijking, en betekent letterlijk een worp erlangs, naast-worp. Vergelijk het met παράλληλος, par-allè-los, naast elkaar, langs elkaar.
Geschiedenis
[bewerken | brontekst bewerken]Het vroegst bekende werk over kegelsneden is van Menaechmus in de vierde eeuw v.Chr. Hij ontdekte een manier om het probleem van de verdubbeling van de kubus met behulp van parabolen op te lossen. De oplossing voldoet daardoor niet aan de eisen voor constructie met passer en liniaal. De oppervlakte omsloten door een parabool en een lijnsegment, het paraboolsegment, werd in de derde eeuw v.Chr. berekend door Archimedes met de uitputtingsmethode in zijn werk De kwadratuur van de parabool. De naam parabool komt van Apollonius, die veel eigenschappen van kegelsneden ontdekte. Het was Pappos van Alexandrië die de eigenschap van de parabool met brandpunt en richtlijn ontdekte.
Wiskundige definitie
[bewerken | brontekst bewerken]Platte vlak
[bewerken | brontekst bewerken]Een parabool is de meetkundige plaats van punten die dezelfde afstand hebben tot een gegeven lijn , de richtlijn, en een gegeven punt , het brandpunt. De parabool is de conflictlijn tussen de richtlijn en het brandpunt.
De parabool wordt beschreven door een kwadratische vergelijking. Voor een parabool met horizontale richtlijn (waarbij een constante is) en brandpunt , die beschreven wordt door de functie kan dit als volgt ingezien worden. Er geldt dat de afstand van het punt tot het brandpunt gelijk is aan
en de afstand tot de richtlijn
- .
Deze afstanden zijn gelijk, dus
- ,
waaruit volgt:
Voor het getal wordt in de wiskundige literatuur vaak geschreven. Het getal wordt de parameter van de parabool genoemd.
Voorbeelden
[bewerken | brontekst bewerken]- De eenvoudigste vergelijking van een parabool is . Het brandpunt van deze parabool is het punt en de richtlijn is de lijn .
- Alle parabolen in het platte vlak zijn gelijkvormig met de parabool .
Driedimensionale ruimte
[bewerken | brontekst bewerken]De parabool is de doorsnede van een vlak met een kegel, preciezer met een rechte cirkelkegel, vandaar dat de parabool een kegelsnede wordt genoemd, zie de figuren. Nemen we de 'snede' voor een moment zintuigelijk, dan zien we in vergelijking met de cirkel en de ellips als doorsnede, dat het snijden van de parabool wel ergens begint, maar niet klaar is aan een ‘andere kant’ van de kegel. Het snijden gaat eindeloos door, evenwijdig aan een van de beschrijvende lijnen van het kegelvlak.
Cartesiaanse vergelijking
[bewerken | brontekst bewerken]De grafiek van een tweedegraadsfunctie, die de volgende algemene vergelijking heeft:
is een parabool.
Als , spreken we van een dalparabool, de bolle kant wijst naar beneden. Als , hebben we te maken met een bergparabool, de bolle kant wijst naar boven. De nulpunten van deze parabool worden gegeven door de wortelformule van de vierkantsvergelijking
- .
De functie kan ook geschreven worden als:
waarbij
De symmetrieas van de parabool is de lijn:
Het minimum of maximum van de parabool is het punt
Door verschuiven van de assen verkrijgt men de standaardvorm:
Vergelijking in poolcoördinaten
[bewerken | brontekst bewerken]Een parabool met de oorsprong als brandpunt en een negatieve -coördinaat van de top, wordt in de poolcoördinaten en beschreven door de vergelijking:
Hierin is de afstand van het brandpunt tot een van de twee punten van de parabool op de -as.
Top
[bewerken | brontekst bewerken]De coördinaten van de top van een parabool met vergelijking zijn
Als , bij een dalparabool, dan is dit een minimum; als , bij een bergparabool, is het een maximum.
Brandpunt en richtlijn
[bewerken | brontekst bewerken]Het brandpunt van een parabool met vergelijking heeft als coördinaten:
De bijbehorende richtlijn heeft als vergelijking
Paraboloïde
[bewerken | brontekst bewerken]De driedimensionale figuur die ontstaat wanneer een parabool rond zijn as wordt gewenteld, heet een paraboloïde.
Toepassingen
[bewerken | brontekst bewerken]- Een kogelbaan is een parabolische baan, op voorwaarde dat de kromming van de aarde, de draaiing van de aarde en de wrijving van de lucht te verwaarlozen zijn. De maximale hoogte en afstand hangen af van de lanceerhoek, ook wel elevatie genoemd, in de figuur . De schietafstand is in dit theoretische geval maximaal wanneer gelijk is aan 45°, aangenomen dat de lanceersnelheid qua grootte niet zou afhangen van deze hoek .
- Bijvoorbeeld de baan van een satelliet langs de zon, waarvan de snelheid zo groot is dat die niet weer in het zwaartekrachtveld van de zon terugkeert, is een parabolische baan.
- Voor een willekeurige parabool wordt de zogeheten paraboolconstante als volgt gedefinieerd:
- Hierin is de booglengte van het paraboolsegment dat bepaald wordt door het latus rectum, de symmetrische koorde door het brandpunt, en de parameter van de parabool. kan worden gebruikt bij het berekenen van enkele bijzondere integralen.[1]