Multifractal Characteristics of Geomagnetic Field Fluctuations for the Northern and Southern Hemispheres at Swarm Altitude
Abstract
:1. Introduction
2. Multifractal Formalism
3. Data and Processing
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heppner, J.P.; Liebrecht, M.C.; Maynard, N.C.; Pfaff, R.F. High-latitude distributions of plasma waves and spatial irregularities from DE 2 alternating current electric field observations. J. Geophys. Res. Space Phys. 1993, 98, 1629–1652. [Google Scholar] [CrossRef]
- Tam, S.W.Y.; Chang, T.; Kintner, P.M.; Klatt, E. Intermittency analyses on the SIERRA measurements of the electric field fluctuations in the auroral zone. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Weimer, D.R.; Goertz, C.K.; Gurnett, D.A.; Maynard, N.C.; Burch, J.L. Auroral zone electric fields from DE 1 and 2 at magnetic conjunctions. J. Geophys. Res. Space Phys. 1985, 90, 7479–7494. [Google Scholar] [CrossRef]
- Kintner, P.; Seyler, C. The status of observations and theory of high latitude ionospheric and magnetospheric plasma turbulence. Space Sci. Rev. 1985, 41, 91–129. [Google Scholar] [CrossRef]
- De Michelis, P.; Pignalberi, A.; Consolini, G.; Coco, I.; Tozzi, R.; Pezzopane, M.; Giannattasio, F.; Balasis, G. On the 2015 St. Patrick’s Storm Turbulent State of the Ionosphere: Hints From the Swarm Mission. J. Geophys. Res. Space Phys. 2020, 125. [Google Scholar] [CrossRef]
- Abel, G.A.; Freeman, M.P. A statistical analysis of ionospheric velocity and magnetic field power spectra at the time of pulsed ionospheric flows. J. Geophys. Res. Space Phys. 2002, 107, SMP 29-1–SMP 29-12. [Google Scholar] [CrossRef] [Green Version]
- Abel, G.A.; Freeman, M.P.; Chisham, G. Spatial structure of ionospheric convection velocities in regions of open and closed magnetic field topology. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Golovchanskaya, I.V.; Kozelov, B.V. On the origin of electric turbulence in the polar cap ionosphere. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- De Michelis, P.; Consolini, G.; Tozzi, R. Magnetic field fluctuation features at Swarm’s altitude: A fractal approach. Geophys. Res. Lett. 2015, 42, 3100–3105. [Google Scholar] [CrossRef] [Green Version]
- De Michelis, P.; Consolini, G.; Tozzi, R.; Marcucci, M.F. Scaling Features of High-Latitude Geomagnetic Field Fluctuations at Swarm Altitude: Impact of IMF Orientation. J. Geophys. Res. Space Phys. 2017. [Google Scholar] [CrossRef]
- Golovchanskaya, I.V.; Ostapenko, A.A.; Kozelov, B.V. Relationship between the high-latitude electric and magnetic turbulence and the Birkeland field-aligned currents. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Kozelov, B.V.; Golovchanskaya, I.V. Scaling of electric field fluctuations associated with the aurora during northward IMF. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Bruno, R.; Carbone, V. The Solar Wind as a Turbulence Laboratory. Living Rev. Sol. Phys. 2013, 10, 1614–4961. [Google Scholar] [CrossRef] [Green Version]
- Ovchinnikov, I.L.; Antonova, E.E. Turbulent transport of the Earth magnitisphere: Review of the results of observations and modeling. Geomagn. Aeron. 2017, 57, 655–663. [Google Scholar] [CrossRef]
- Pollock, C.; Burch, J.; Chasapis, A.; Giles, B.L.; Mackler, D.; Matthaeus, W.; Russell, C. Magnetospheric Multiscale Observations of Turbulent Magnetic and Electron Velocity Fluctuations in Earth’s Magnetosheath Downstream of a quasi-parallel bow shock. Geomagn. Aeron. 2018, 177, 84–91. [Google Scholar] [CrossRef]
- Baumjohann, W.; Paschmann, G.; Lühr, H. Characteristics of high-speed ion flows in the plasma sheet. J. Geophys. Res. Space Phys. 1990, 95, 3801–3809. [Google Scholar] [CrossRef]
- Angelopoulos, V.; Mukai, T.; Kokubun, S. Evidence for intermittency in Earth’s plasma sheet and implications for self-organized criticality. Phys. Plasmas 1999, 6, 4161–4168. [Google Scholar] [CrossRef]
- Baker, D.N.; Pulkkinen, T.I.; Büchner, J.; Klimas, A.J. Substorms: A global instability of the magnetosphere-ionosphere system. J. Geophys. Res. Space Phys. 1999, 104, 14601–14611. [Google Scholar] [CrossRef]
- Sitnov, M.I.; Sharma, A.S.; Papadopoulos, K.; Vassiliadis, D.; Valdivia, J.A.; Klimas, A.J.; Baker, D.N. Phase transition-like behavior of the magnetosphere during substorms. J. Geophys. Res. Space Phys. 2000, 105, 12955–12974. [Google Scholar] [CrossRef]
- Borovsky, J.; Valdivia, J. The Earth’s Magnetosphere: A Systems Science Overview and Assessment. Surv. Geophys. 2018, 39, 817–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdivia, J.A.; Sharma, A.S.; Papadopoulos, K. Prediction of magnetic storms by nonlinear models. Geophys. Res. Lett. 1996, 23, 2899–2902. [Google Scholar] [CrossRef] [Green Version]
- Valdivia, J.A.; Vassiliadis, D.; Klimas, A.; Sharma, A.S. Modeling the spatial structure of the high latitude magnetic perturbations and the related current systems. Phys. Plasmas 1999, 6, 4185–4194. [Google Scholar] [CrossRef]
- Weimer, D.R. Predicting surface geomagnetic variations using ionospheric electrodynamic models. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Klimas, A.J.; Valdivia, J.A.; Vassiliadis, D.; Baker, D.N.; Hesse, M.; Takalo, J. Self-organized criticality in the substorm phenomenon and its relation to localized reconnection in the magnetospheric plasma sheet. J. Geophys. Res. Space Phys. 2000, 105, 18765–18780. [Google Scholar] [CrossRef]
- Valdivia, J.A.; Rogan, J.; Muñoz, V.; Toledo, B.A.; Stepanova, M. The magnetosphere as a complex system. Adv. Space Res. 2013, 51, 1934–1941. [Google Scholar] [CrossRef]
- Pettigrew, E.D.; Shepherd, S.G.; Ruohoniemi, J.M. Climatological patterns of high-latitude convection in the Northern and Southern hemispheres: Dipole tilt dependencies and interhemispheric comparisons. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Pulkkinen, A.; Klimas, A.; Vassiliadis, D.; Uritsky, V.; Tanskanen, E. Spatiotemporal scaling properties of the ground geomagnetic field variations. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Abel, G.A.; Freeman, M.P.; Chisham, G.; Watkins, N.W. Investigating turbulent structure of ionospheric plasma velocity using the Halley SuperDARN radar. Nonlinear Process. Geophys. 2007, 14, 799–809. [Google Scholar] [CrossRef] [Green Version]
- Cousins, E.D.P.; Shepherd, S.G. A dynamical model of high-latitude convection derived from SuperDARN plasma drift measurements. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef]
- Jaffard, S.; Melot, C.; Leonarduzzi, R.; Wendt, H.; Abry, P.; Roux, S.; Torres, M. p-exponent and p-leaders, Part I: Negative pointwise regularity. Phys. A Stat. Mech. Its Appl. 2016, 448, 300–318. [Google Scholar] [CrossRef] [Green Version]
- Leonarduzzi, R.; Wendt, H.; Abry, P.; Jaffard, S.; Melot, C.; Roux, S.; Torres, M. p-exponent and p-leaders, Part II: Multifractal analysis. Relations to detrended fluctuation analysis. Phys. A Stat. Mech. Its Appl. 2016, 448, 319–339. [Google Scholar] [CrossRef] [Green Version]
- Davis, T.N.; Sugiura, M. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 1966, 71, 785–801. [Google Scholar] [CrossRef] [Green Version]
- Tsurutani, B.T.; Gonzalez, W.D. The cause of high-intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfvén wave trains. Planet. Space Sci. 1987, 35, 405–412. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D.; Guarnieri, F.; Kamide, Y.; Zhou, X.; Arballo, J.K. Are high-intensity long-duration continuous AE activity (HILDCAA) events substorm expansion events? J. Atmos. Sol.-Terr. Phys. 2004, 66, 167–176. [Google Scholar] [CrossRef]
- Hajra, R.; Echer, E.; Tsurutani, B.T.; Gonzalez, W.D. Solar cycle dependence of High-Intensity Long-Duration Continuous AE Activity (HILDCAA) events, relativistic electron predictors? J. Geophys. Res. Space Phys. 2013, 118, 5626–5638. [Google Scholar] [CrossRef]
- ESA. SWARM. 2013. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/swarm (accessed on 9 November 2017).
- Frisch, U. Turbulence: The Legacy of A.N. Kolmogorov; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Feigenbaum, M.J.; Jensen, M.H.; Procaccia, I. Time Ordering and the Thermodynamics of Strange Sets: Theory and Experimental Tests. Phys. Rev. Lett. 1986, 57, 1503–1506. [Google Scholar] [CrossRef] [PubMed]
- Arneodo, A.; Bacry, E.; Muzy, J. The thermodynamics of fractals revisited with wavelets. Phys. A Stat. Mech. Appl. 1995, 213, 232–275. [Google Scholar] [CrossRef]
- Bunde, A.; Kropp, J.; Schellnhuber, H.J. The Science of Disasters: Climate Disruptions, Heart Attacks, and Market Crashes; Number v. 2 in Physics and Astronomy Online Library; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Jaffard, S.; Lashermes, B.; Abry, P. Wavelet Leaders in Multifractal Analysis. Wavelet Analysis and Applications; Qian, T., Vai, M.I., Xu, Y., Eds.; Birkhäuser Basel: Basel, Switzerland, 2007; pp. 201–246. [Google Scholar]
- Ayache, A.; Jaffard, S. Hölder exponents of arbitrary functions. Rev. Mat. Iberoam. 2010, 26, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Abry, P.; Wendt, H.; Jaffard, S.; Helgason, H.; Goncalves, P.; Pereira, E.; Gharib, C.; Gaucherand, P.; Doret, M. Methodology for multifractal analysis of heart rate variability: From LF/HF ratio to wavelet leaders. In Proceedings of the 32nd Annual International IEEE EMBS Conference, Buenos Aires, Argentina, 31 August–4 September 2010. [Google Scholar] [CrossRef]
- Wendt, H.; Abry, P.; Jaffard, S. Bootstrap for Empirical Multifractal Analysis. Signal Process. Mag. IEEE 2007, 24, 38–48. [Google Scholar] [CrossRef]
- Jaffard, S. On the Frisch–Parisi conjecture. J. Math. Pures Appl. 2000, 79, 525–552. [Google Scholar] [CrossRef] [Green Version]
- Lashermes, B.; Roux, S.G.; Abry, P.; Jaffard, S. Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders. Eur. Phys. J. B 2008, 61, 201–215. [Google Scholar] [CrossRef] [Green Version]
- Wendt, H.; Roux, S.G.; Abry, P.; Jaffard, S. Wavelet leaders and bootstrap for multifractal analysis of images. Signal Process. 2009, 89, 1100–1114. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Saxena, R.K. Operators of fractional integration and their applications. Appl. Math. Comput. 2001, 118, 1–52. [Google Scholar] [CrossRef]
- Mallat, S. A Wavelet Tour of Signal Processing, Second Edition (Wavelet Analysis & Its Applications), 2nd ed.; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Jaffard, S.; Meyer, Y.; Ryan, R.D. Wavelets, revised ed.; Tools for Science and Technology; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2001. [Google Scholar]
- Wendt, H. Toolbox. 2017. Available online: https://www.irit.fr/~Herwig.Wendt/software.html (accessed on 10 November 2017).
- Daubechies, I. Ten Lectures on Wavelets; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992. [Google Scholar]
- AACGM. 2017. Available online: http://superdarn.thayer.dartmouth.edu/aacgm.html (accessed on 25 April 2021).
- Cazelles, B.; Chavez, M.; Berteaux, D.; Ménard, F.; Vik, J.O.; Jenouvrier, S.; Stenseth, N.C. Wavelet analysis of ecological time series. Oecologia 2008, 156, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Abrahamsen, A.; Allen, P.M.; Barandiaran, X.; Bechtel, W.; Bickhard, M.H.; Bishop, R.C.; Brinsmead, T.S.; Coffman, J.A.; Downey, S.S.; Foster, J.; et al. Philosophy of Complex Systems. In Handbook of the Philosophy of Science; North Holland Publishing Co.: Amsterdam, The Netherlands, 2011; Volume 10, pp. vii–x. [Google Scholar] [CrossRef]
- Consolini, G.; Tozzi, R.; De Michelis, P.; Coco, I.; Giannattasio, F.; Pezzopane, M.; Marcucci, F.M.; Balasis, G. High-latitude polar pattern of ionospheric electron density: Scaling features and IMF dependence. J. Atmos. Sol. Terr. Phys. 2017, 217, 105531. [Google Scholar] [CrossRef]
- Toledo, B.A.; Chian, A.C.L.; Rempel, E.L.; Miranda, R.A.; Muñoz, P.R.; Valdivia, J.A. Wavelet-based multifractal analysis of nonlinear time series: The earthquake-driven tsunami of 27 February 2010 in Chile. Phys. Rev. E 2013, 87, 022821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakhotin, I.P.; Mann, I.R.; Xie, K.; Burchill, D.J. Northern preference for terrestrial electromagnetic energy input from space weather. Nat. Commun. 2021, 12, 199. [Google Scholar] [CrossRef]
- Benzit, R.; Paladin, P.; Parisis, G.; Vulpiani, A. On the multifractal nature of fully developed turbulence and chaotic systems. J. Phys. A Math. Gen. 1984, 17, 3521–3531. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toledo, B.; Medina, P.; Blunier, S.; Rogan, J.; Stepanova, M.; Valdivia, J.A. Multifractal Characteristics of Geomagnetic Field Fluctuations for the Northern and Southern Hemispheres at Swarm Altitude. Entropy 2021, 23, 558. https://doi.org/10.3390/e23050558
Toledo B, Medina P, Blunier S, Rogan J, Stepanova M, Valdivia JA. Multifractal Characteristics of Geomagnetic Field Fluctuations for the Northern and Southern Hemispheres at Swarm Altitude. Entropy. 2021; 23(5):558. https://doi.org/10.3390/e23050558
Chicago/Turabian StyleToledo, Benjamín, Pablo Medina, Sylvain Blunier, José Rogan, Marina Stepanova, and Juan Alejandro Valdivia. 2021. "Multifractal Characteristics of Geomagnetic Field Fluctuations for the Northern and Southern Hemispheres at Swarm Altitude" Entropy 23, no. 5: 558. https://doi.org/10.3390/e23050558
APA StyleToledo, B., Medina, P., Blunier, S., Rogan, J., Stepanova, M., & Valdivia, J. A. (2021). Multifractal Characteristics of Geomagnetic Field Fluctuations for the Northern and Southern Hemispheres at Swarm Altitude. Entropy, 23(5), 558. https://doi.org/10.3390/e23050558