Using RGISTools to Estimate Water Levels in Reservoirs and Lakes
Abstract
:1. Introduction
2. Study Site
3. Materials and Methods
3.1. Materials
3.1.1. Auxiliary Data
- > library("sf")
- > roi.bbox <- st_bbox(c(xmin = -1.40, xmax = -1.30,
- ymin = 42.79, ymax = 42.88), crs = 4326)
- > roi.sf <- st_as_sf(st_as_sfc(roi.bbox))
3.1.2. Satellite Imagery
3.2. Methods
3.2.1. Searching
- > library("RGISTools")
- > sres.ls8 <- lsSearch(product = "LANDSAT_8_C1",
- dates = as.Date("2018-07-01") + seq(0, 304, 1),
- region = roi.sf,
- cloudCover = c(0,80),
- username = "USERNAME",
- password = "PASSWORD")
- > sres.sn2 <- senSearch(platform = "Sentinel-2",
- product = "S2MSI2A",
- dates = as.Date("2018-07-01") + seq(0, 304, 1),
- region = roi.sf,
- cloudCover = c(0,80),
- username = "USERNAME",
- password = "PASSWORD")
3.2.2. Downloading
- > wdir.ls8 <- file.path(wdir, "Landsat8")
- > lsDownload(searchres = sres.ls8,
- lvl = 2,
- untar = TRUE,
- bFilter = list("band3", "band5", "pixel_qa"),
- username = "USERNAME",
- password = "PASSWORD",
- l2rqname = "REQUESTNAME",
- AppRoot = wdir)
- > wdir.sn2 <- file.path(wdir, "Sentinel2")
- > senDownload(searchres = sres.sn2,
- unzip = TRUE,
- bFilter = list("B03_10m", "B08_10m", "CLDPRB_20m"),
- username = "USERNAME",
- password = "PASSWORD",
- AppRoot = wdir.sn2)
3.2.3. Mosaicking and Cropping
- > wdir.ls8.untar <- file.path(wdir.ls8, "untar")
- > lsMosaic(src = wdir.ls8.untar,
- region = roi.sf,
- out.name = "ls8_itoiz",
- gutils = TRUE,
- AppRoot = wdir.ls8)
- > wdir.sn2.unzip <- file.path(wdir.sn2, "unzip")
- > senMosaic(src = wdir.sn2.unzip,
- region = roi.sf,
- out.name = "sn2_itoiz",
- gutils = TRUE,
- AppRoot = wdir.sn2)
3.2.4. Cloud Mask Filtering
- > wdir.ls8.mosaic <- file.path(wdir.ls8, "ls8_itoiz")
- > lsCloudMask(src = wdir.ls8.mosaic,
- out.name = "ls8_cldmask",
- AppRoot = wdir.ls8)
- > wdir.sn2.mosaic <- file.path(wdir.sn2, "sn2_itoiz")
- > senCloudMask(src = wdir.sn2.mosaic,
- out.name = "sn2_cldmask",
- AppRoot = wdir.sn2)
- > wdir.ls8.cld <- file.path(wdir.ls8, "ls8_cldmask")
- > wdir.sn2.cld <- file.path(wdir.sn2, "sn2_cldmask")
- > wdir.all.cld <- list(wdir.ls8.cld, wdir.sn2.cld)
- > fils.cld.msk <- lapply(wdir.all.cld, list.files, full.names = TRUE)
- > imgs.cld.msk <- lapply(files.cld.msk, stack)
- > names(imgs.cld.msk) <- c("ls8", "sn2")
- > cld.coverage <- lapply(imgs.cld.msk,
- function(x){
- colSums(is.na(getValues(x)))/ncell(x)
- })
- > names(cld.coverage) <- c("ls8", "sn2")
- > ls8.clr.imgs <- which(cld.coverage$ls8 < 0.20)
- > sn2.clr.imgs <- which(cld.coverage$sn2 < 0.001)
- > ls8.clr.dates <- genGetDates(names(imgs.cld.msk$ls8))[ls8.clr.imgs]
- > sn2.clr.dates <- genGetDates(names(imgs.cld.msk$sn2))[sn2.clr.imgs]
3.2.5. Deriving the Ndwi
- > wdir.ls8.mosaic <- file.path(wdir.ls8, "ls8_itoiz")
- > ls8FolderToVar(src = wdir.ls8.mosaic,
- fun = varNDWI,
- dates = ls8.clr.dates,
- AppRoot = wdir.ls8)
- > wdir.sn2.mosaic <- file.path(wdir.sn2, "sn2_itoiz")
- > senFolderToVar(src = wdir.sn2.mosaic,
- fun = varNDWI,
- dates = sn2.clr.dates,
- AppRoot = wdir.sn2)
3.2.6. Detecting Water and Level Analysis
- > imgs.ndwi <- list(
- stack(list.files(file.path(wdir.ls8,"NDWI"), full.names = TRUE)),
- stack(list.files(file.path(wdir.sn2,"NDWI"), full.names = TRUE)))
- > names(imgs.ndwi[[1]]) <- paste0(names(imgs.ndwi[[1]]), "_LS8")
- > names(imgs.ndwi[[2]]) <- paste0(gsub("10m", "SN2", names(imgs.ndwi[[2]])))
- > imgs.ndwi[[2]] <- projectRaster(imgs.ndwi[[2]], imgs.ndwi[[1]])
- > imgs.ndwi <- stack(imgs.ndwi)
- > imgs.ndwi <- imgs.ndwi[[order(names(imgs.ndwi))]]
- Detection of flooded pixels: Pixels above the thresholds (Landsat-8) and (Sentinel-2) are considered as flooded in the NDWI series. The thresholds were selected by visual inspection.
- Shoreline identification: This aims at joining the flooded pixels into a single entity. The individual flooded pixels are transformed into polygons, a class object in R. This class allows removing the interior boundaries among them, merging all the flooded pixels into a single polygon. Isolated misclassified pixels or scattered polygons are dismissed. The edge of the largest polygon defines the main water body shoreline.
- Estimating water levels: We extract the shoreline elevations by intersecting the polygon with the topographic map. Elevations may contain some errors due to inaccuracies in the topographic map or the shoreline delineation. Hence, the elevations are used to derive a probability density distribution. The most likely elevation is the one with the highest density value.
- > shorelns <- lapply(as.list(imgs.ndwi),
- function(r){
- thrsh <- ifelse(grepl("LS8",names(r)), -0.16, -0.10)
- water <- rasterToPolygons(clump(r> thrsh), dissolve = TRUE)
- shors <- st_union(st_as_sfc(water))
- bodis <- st_cast(shors, "POLYGON")
- areas <- st_area(bodis)
- st_sf(st_cast(bodis[which.max(areas)], "MULTILINESTRING"))
- }
- )
- > shorelns.z <- lapply(shorelns,
- function(pol, altimetry.itoiz){
- line <- as(as(pol, "Spatial"), "SpatialLines")
- cell <- cellFromLine(altimetry.itoiz, line)[[1]]
- elvs <- getValues(altimetry.itoiz)[cell]
- dnst <- density(elvs, kernel = "epanechnikov", na.rm = T)
- dnst$x[which.max(dnst$y)]
- }, altimetry.itoiz)
- > level.est <- unlist(shorelns.z)
3.2.7. Evaluation
4. Results
4.1. Flooded Area and Level Estimates
Rgistools (V1.0.2) Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
CPU | Central processing unit |
DEM | Digital elevation model |
EROS | USGS Earth Resources Observation and Science |
ESPA | EROS Center Science Processing Architecture |
ESA | European Space Agency |
GHz | Gigahertz |
IDENA | Infraestructura de Datos Espaciales de Navarra |
IDW | Inverse distance weighting |
MABEL | Multiple Altimeter Beam Experimental Lidar |
MAE | Mean absolute error |
MAPE | Mean absolute percentage error |
Mbps | Megabit per second |
MNDWI | Modified normalized difference water index |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NDWI | Normalized difference water index |
NIR | Near infra-red |
RMSE | Root mean squared error |
ROI | Region of interest |
SAIH | Sistema Automático de Información Hidrológica |
SAR | Synthetic aperture radar |
STRM | Shuttle Radar Topographic Mission |
USGS | Unites States Geological Survey |
Appendix A. Inspection of a Built-Up Area
References
- Donaldson, D.; Storeygard, A. The view from above: Applications of satellite data in economics. J. Econ. Perspect. 2016, 30, 171–198. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems. Remote Sens. Environ. 2019, 223, 21–33. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote sensing techniques for soil organic carbon estimation: A review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Shao, Q.; Yue, H. Surveying Wild Animals from Satellites, Manned Aircraft and Unmanned Aerial Systems (UASs): A Review. Remote Sens. 2019, 11, 1308. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 124905. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual Reflectance Composites from Sentinel-2 and Landsat for National-scale Crop and Land Cover Mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Belgiu, M.; Stein, A. Spatiotemporal Image Fusion in Remote Sensing. Remote Sens. 2019, 11, 818. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 23 January 2020).
- Hijmans, R.J. raster: Geographic Data Analysis and Modeling. R Package Version 2.9-5. 2019. Available online: https://CRAN.R-project.org/package=raster (accessed on 18 February 2019).
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Pebesma, E. stars: Spatiotemporal Arrays, Raster and Vector Data Cubes. R Package Version 0.4-0. 2019. Available online: https://CRAN.R-project.org/package=stars (accessed on 14 February 2020).
- Wegner Maus, V.; Câmara, G.; Appel, M.; Pebesma, E. dtwSat: Time-weighted dynamic time warping for satellite image time series analysis in R. J. Stat. Softw. 2019, 88, 1–31. [Google Scholar]
- Leutner, B.; Horning, N.; Schwalb-Willmann, J. RStoolbox: Tools for Remote Sensing Data Analysis. R Package Version 0.2.6. 2019. Available online: https://CRAN.R-project.org/package=RStoolbox (accessed on 20 March 2020).
- Zhou, T.; Popescu, S. waveformlidar: An R Package for Waveform LiDAR Processing and Analysis. Remote Sens. 2019, 11, 2552. [Google Scholar] [CrossRef] [Green Version]
- Appelhans, T.; Detsch, F.; Reudenbach, C.; Woellauer, S. mapview: Interactive Viewing of Spatial Data in R. R Package Version 2.7.0. 2019. Available online: https://CRAN.R-project.org/package=mapview (accessed on 20 March 2020).
- Tennekes, M. tmap: Thematic Maps in R. J. Stat. Softw. 2018, 84, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Santacruz, A.; Developers, S.A. SkyWatchr: Search and Download Satellite Imagery Using the SkyWatch API. R Package Version 0.8-2. 2017. Available online: https://CRAN.R-project.org/package=SkyWatchr (accessed on 3 February 2020).
- Busetto, L.; Ranghetti, L. MODIStsp: An R Package for Preprocessing of MODIS Land Products Time Series. Comput. Geosci. 2016, 97, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Ranghetti, L.; Busetto, L. sen2r: Find, Download and Process Sentinel-2 Data, 2019. R package version 1.2.1. Available online: http://sen2r.ranghetti.info (accessed on 18 March 2020).
- Goslee, S.C. Analyzing Remote Sensing Data in R: The landsat Package. J. Stat. Softw. 2011, 43, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Nauss, T.; Meyer, H.; Detsch, F.; Appelhans, T. Manipulating Satellite Data with Satellite. 2015. Available online: www.environmentalinformatics-marburg.de (accessed on 25 March 2020).
- Pérez-Goya, U.; Militino, A.F.; Ugarte, M.D.; Montesino-SanMartin, M. RGISTools: Handling Multiplatform Satellite Images. R Package Version 1.0.2.—CRAN: 2019. Available online: https://CRAN.R-project.org/package=RGISTools (accessed on 26 March 2020).
- Militino, A.F.; Ugarte, M.D.; Pérez-Goya, U.; Genton, M.G. Interpolation of the Mean Anomalies for Cloud Filling in Land Surface Temperature and Normalized Difference Vegetation Index. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6068–6078. [Google Scholar] [CrossRef]
- Rembold, F.; Meroni, M.; Urbano, F.; Royer, A.; Atzberger, C.; Lemoine, G.; Eerens, H.; Haesen, D. Remote sensing time series analysis for crop monitoring with the SPIRITS software: New functionalities and use examples. Front. Environ. Sci. 2015, 3, 46. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Gao, H. Towards global hydrological drought monitoring using remotely sensed reservoir surface area. Geophys. Res. Lett. 2019, 46, 13027–13035. [Google Scholar] [CrossRef]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI—An innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Feng, Y.; Dessay, N.; Delaitre, E.; Gurgel, H.; Gong, P. Continuous Monitoring of the Spatio-Temporal Patterns of Surface Water in Response to Land Use and Land Cover Types in a Mediterranean Lagoon Complex. Remote Sens. 2019, 11, 1425. [Google Scholar] [CrossRef] [Green Version]
- Kuenzer, C.; Heimhuber, V.; Huth, J.; Dech, S. Remote Sensing for the Quantification of Land Surface Dynamics in Large River Delta Regions—A Review. Remote Sens. 2019, 11, 1985. [Google Scholar] [CrossRef] [Green Version]
- Wieland, M.; Martinis, S. A Modular Processing Chain for Automated Flood Monitoring from Multi-Spectral Satellite Data. Remote Sens. 2019, 11, 2330. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Pan, H.; Song, C.; Ke, L.; Wang, J.; Ma, R.; Deng, X.; Liu, K.; Zhu, J.; Wu, Q. Identifying emerging reservoirs along regulated rivers using multi-source remote sensing observations. Remote Sens. 2019, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Dörnhöfer, K.; Oppelt, N. Remote sensing for lake research and monitoring–Recent advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- Lu, S.; Ouyang, N.; Wu, B.; Wei, Y.; Tesemma, Z. Lake water volume calculation with time series remote-sensing images. Int. J. Remote Sens. 2013, 34, 7962–7973. [Google Scholar] [CrossRef]
- Li, Y.; Gao, H.; Zhao, G.; Tseng, K.H. A high-resolution bathymetry dataset for global reservoirs using multi-source satellite imagery and altimetry. Remote Sens. Environ. 2020, 244, 111831. [Google Scholar] [CrossRef]
- Yue, H.; Liu, Y. Variations in the lake area, water level, and water volume of Hongjiannao Lake during 1986–2018 based on Landsat and ASTER GDEM data. Environ. Monit. Assess. 2019, 191, 606. [Google Scholar] [CrossRef] [PubMed]
- Abrams, M.; Crippen, R.; Fujisada, H. ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD). Remote Sens. 2020, 12, 1156. [Google Scholar] [CrossRef] [Green Version]
- Chipman, J.W. A multisensor approach to satellite monitoring of trends in lake area, water level, and volume. Remote Sens. 2019, 11, 158. [Google Scholar] [CrossRef] [Green Version]
- Bhagwat, T.; Klein, I.; Huth, J.; Leinenkugel, P. Volumetric Analysis of Reservoirs in Drought-Prone Areas Using Remote Sensing Products. Remote Sens. 2019, 11, 1974. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Foerster, S.; Medeiros, P.; de Araújo, J.C.; Motagh, M.; Waske, B. Bathymetric survey of water reservoirs in north-eastern Brazil based on TanDEM-X satellite data. Sci. Total. Environ. 2016, 571, 575–593. [Google Scholar] [CrossRef] [PubMed]
- Vanthof, V.; Kelly, R. Water storage estimation in ungauged small reservoirs with the TanDEM-X DEM and multi-source satellite observations. Remote Sens. Environ. 2019, 235, 111437. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, N.; Sun, J.; Wang, X.H.; Yang, F.; Li, S. Estimating water levels and volumes of lakes dated back to the 1980s using Landsat imagery and photon-counting lidar datasets. Remote Sens. Environ. 2019, 232, 111287. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sens. Environ. 2013, 134, 403–416. [Google Scholar] [CrossRef]
- Yuan, C.; Gong, P.; Bai, Y. Performance Assessment of ICESat-2 Laser Altimeter Data for Water-Level Measurement over Lakes and Reservoirs in China. Remote Sens. 2020, 12, 770. [Google Scholar] [CrossRef] [Green Version]
- Siles, G.; Trudel, M.; Peters, D.L.; Leconte, R. Hydrological monitoring of high-latitude shallow water bodies from high-resolution space-borne D-InSAR. Remote Sens. Environ. 2020, 236, 111444. [Google Scholar] [CrossRef]
- Tseng, K.H.; Shum, C.; Kim, J.W.; Wang, X.; Zhu, K.; Cheng, X. Integrating Landsat imageries and digital elevation models to infer water level change in Hoover Dam. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1696–1709. [Google Scholar] [CrossRef]
- Kwang, C.; Jnr, E.M.O.; Amoah, A.S. Comparing of landsat 8 and sentinel 2A using water extraction indexes over Volta River. J. Geogr. Geol. 2018, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Schwatke, C.; Scherer, D.; Dettmering, D. Automated Extraction of Consistent Time-Variable Water Surfaces of Lakes and Reservoirs Based on Landsat and Sentinel-2. Remote Sens. 2019, 11, 1010. [Google Scholar] [CrossRef] [Green Version]
- Weekley, D.; Li, X. Tracking Multidecadal Lake Water Dynamics with Landsat Imagery and Topography/ Bathymetry. Water Resour. Res. 2019, 55, 8350–8367. [Google Scholar] [CrossRef]
- Government of Navarre. Open Data Navarre—IDENA Download. 2019. Available online: https://idena.navarra.es/Portal/Descargar (accessed on 1 October 2019).
- Ebro River Basin Authority. Automatic Hydrological Information System. 2019. Available online: http://www.saihebro.com/saihebro/index.php (accessed on 1 October 2019).
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- ESA. Sentinel Data Products. 2019. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products (accessed on 30 March 2020).
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- ESA. Open Access Hub. 2019. Available online: https://scihub.copernicus.eu (accessed on 8 March 2020).
- NASA. Earthdata. 2019. Available online: https://earthdata.nasa.gov (accessed on 8 March 2020).
- Jenkerson, C. User Guide: Earth Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA) on Demand Interface; USGS: Reston, VA, USA, 2019.
- NASA. EarthData Registration. 2020. Available online: https://urs.earthdata.nasa.gov/users/new (accessed on 30 March 2020).
- Copernicus. SciHub Registation. 2020. Available online: https://scihub.copernicus.eu/dhus/#/self-registration (accessed on 30 March 2020).
- Montesino-SanMartin, M.; Spatial Statistics-UPNA. Github Repository. Available online: https://github.com/spatialstatisticsupna/itoiz_article (accessed on 8 April 2020).
- Jeffrey, W.; Hollister, J.S. lakemorpho: Lake Morphometry Metrics. R Package Version 1.1.1. 2018. Available online: https://CRAN.R-project.org/package=lakemorpho (accessed on 16 March 2020).
- GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction Software Library. Open Source Geospatial Foundation, 2019. Available online: https://gdal.org (accessed on 12 March 2020).
- Ma, S.; Zhou, Y.; Gowda, P.H.; Dong, J.; Zhang, G.; Kakani, V.G.; Wagle, P.; Chen, L.; Flynn, K.C.; Jiang, W. Application of the water-related spectral reflectance indices: A review. Ecol. Indic. 2019, 98, 68–79. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Mandanici, E.; Bitelli, G. Preliminary comparison of Sentinel-2 and Landsat-8 imagery for a combined use. Remote Sens. 2016, 8, 1014. [Google Scholar] [CrossRef] [Green Version]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Landini, G.; Randell, D.; Fouad, S.; Galton, A. Automatic thresholding from the gradients of region boundaries. J. Microsc. 2017, 265, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Xu, S.; Jin, L.; Song, E. Characteristic analysis of Otsu threshold and its applications. Pattern Recognit. Lett. 2011, 32, 956–961. [Google Scholar] [CrossRef]
- Markert, K.N.; Chishtie, F.; Anderson, E.R.; Saah, D.; Griffin, R.E. On the merging of optical and SAR satellite imagery for surface water mapping applications. Results Phys. 2018, 9, 275–277. [Google Scholar] [CrossRef]
- Esri. World Imagery, 2020. credits: Esri, Maxar, Earthstar Geographics, CNES/Airbus DS, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community. Available online: https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer (accessed on 29 March 2020).
- Cheng, J.; Karambelkar, B.; Xie, Y. leaflet: Create Interactive Web Maps with the JavaScript ’Leaflet’ Library. R Package Version 2.0.3. 2019. Available online: https://CRAN.R-project.org/package=leaflet (accessed on 12 March 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Militino, A.F.; Montesino-SanMartin, M.; Pérez-Goya, U.; Ugarte, M.D. Using RGISTools to Estimate Water Levels in Reservoirs and Lakes. Remote Sens. 2020, 12, 1934. https://doi.org/10.3390/rs12121934
Militino AF, Montesino-SanMartin M, Pérez-Goya U, Ugarte MD. Using RGISTools to Estimate Water Levels in Reservoirs and Lakes. Remote Sensing. 2020; 12(12):1934. https://doi.org/10.3390/rs12121934
Chicago/Turabian StyleMilitino, Ana F., Manuel Montesino-SanMartin, Unai Pérez-Goya, and M. Dolores Ugarte. 2020. "Using RGISTools to Estimate Water Levels in Reservoirs and Lakes" Remote Sensing 12, no. 12: 1934. https://doi.org/10.3390/rs12121934
APA StyleMilitino, A. F., Montesino-SanMartin, M., Pérez-Goya, U., & Ugarte, M. D. (2020). Using RGISTools to Estimate Water Levels in Reservoirs and Lakes. Remote Sensing, 12(12), 1934. https://doi.org/10.3390/rs12121934