Mineralization Process of MVT Zn-Pb Deposit Promoted by the Adsorbed Hydrocarbon: A Case Study from Mayuan Deposit on the North Margin of Sichuan Basin
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Comparison Results of Samples before and after the Extraction Experiment
4.2. Pearson Correlation Coefficient and Rare Earth Partition Model of the Mayuan Zn-Pb Deposit
4.3. Correlation Analysis between Black Shale and Mayuan Zn-Pb Deposits
5. Discussion
5.1. Conjecture on the Type of Organic Matter during the Mineralization
5.2. The Correlation Analysis of Asphaltene Samples and Their Metal Carrying Capacity
5.3. Correlation Analysis between the Mayuan Zn-Pb Deposit and Black Shale
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dai, Z.X. The distribution types and exploration criteria of lead and zinc resources in the world. World Nonferr. Metal. 2005, 3, 15–23. [Google Scholar]
- James, M.; Wood, H.S.; Omid, H.A.; Curtis, M.E.; Akai, T.; Currie, C. Solid bitumen in the Montney Formation; Diagnostic petro-graphic characteristics and significance for hydrocarbon migration. Int. J. Coal Geol. 2018, 198, 829–838. [Google Scholar]
- Susan, R.; Keith, D.; Robert, S. Structural and diagenetic origin of breccias in the carbonate-hosted Polaris Zn-Pb deposit, Nunavut, Canada-Science Direct. Ore Geol. Rev. 2013, 55, 110–124. [Google Scholar]
- Selby, D.; Creaser, R.A.; Dewing, K.; Fowler, M. Evaluation of bitumen as a lM Re-1MOs geochronometer for hydrocarbon matu-ation and migration: A test case from the Polaris MVT deposit, Canada. Earth Planet. Sci. Lett. 2005, 235, 1–15. [Google Scholar] [CrossRef]
- Peter, N.L.; John, R.G. The effect of time changes in diagnosing lung cancer type on its recorded distribution, with particular reference to adenocarcinoma. Regul. Toxicol. Pharm. 2016, 81, 322–333. [Google Scholar]
- Vandeginste, V.; Swennen, R.; Gleeson, S.A.; Ellam, R.M.; Osadetz, K.; Roure, F. Geochemical constraints on the origin of the Kicking Horse and Monarch Mississippi Valley-type lead-zinc ore deposits, southeast British Columbia, Canada. Miner. Depos. 2007, 42, 913–935. [Google Scholar] [CrossRef]
- Chen, J.P.; Xiang, J.; Hu, Q.; Wei, Y.; Zili, L.; Bin, H.U.; Wei, W. Quantitative Geoscience and Geological Big Data Development. Acta Geol. Sin. 2016, 90, 1490–1515. [Google Scholar]
- Gu, X.X.; Zhang, Y.M.; Li, B.H.; Xue, C.J.; Dong, S.Y.; Fu, S.H.; Cheng, W.B.; Liu, L.; Wu, C.Y. Coupling relationship between metal mineralization and hydrocarbon accumulation in sedimentary basins. Earth Sci. Front. 2010, 17, 83–105. [Google Scholar]
- Gao, Y.B.; Li, K.; Qian, B.; WenYuan, L.; MinChang, Z.; Zhang, C. Trace elements, S, Pb, He, Ar and C isotopes of sphalerite in the Mayuan Zn-Pb deposits, at the northern margin ofthe Yangtze Plate, China. Acta Petrol. Sin. 2016, 32, 251–263. [Google Scholar]
- Sverjensky, D.A. Genesis of Mississippi Valley Type lead-zinc deposits. Annu. Rev. Earth Planet. Sci. 1986, 14, 177–199. [Google Scholar] [CrossRef]
- Huang, H.X.; Li, R.X.; Xiong, F.Y.; Hu, H.; Sun, W.; Jiang, Z.; Chen, L.; Wu, L. A method to probe the pore-throat structure of tight reservoirs based on low-field NMR: Insights from a cylindrical pore model. Mar. Petrol. Geol. 2020, 117, 104344. [Google Scholar] [CrossRef]
- Huang, H.X.; Li, R.X.; Jiang, Z.X.; Chen, L. Investigation of variation in shale gas adsorption capacity with burial depth: Insights from the adsorption potential theory. J. Nat. Gas. Sci. Eng. 2020, 73, 103043. [Google Scholar] [CrossRef]
- Miles, F.; Fiona, W.; Cathy, H. Fluid expulsion from over pressured basins: Implications for Pb, Zn mineralisation and dolomitisation of the East Midlands platform, northern England. Mar. Petrol. Geol. 2014, 55, 68–86. [Google Scholar]
- Nicole, C.H.; Jacob, J.H.; Alexander, P.G. The role of hydrocarbons in ore formation at the Pillara Mississippi Valley type Zn-Pb deposit, Canning Basin, Western Australia. Ore Geol. Rev. 2018, 102, 875–893. [Google Scholar]
- Chen, W.; Huang, Z.L.; Ye, L.; Hu, Y.; Santosh, M.; Wu, T.; He, L.; Zhang, J.; He, Z.; Xiang, Z.; et al. Genesis of carbonate-hosted Zn-Pb deposits in the Late Indosinian thrust and fold systems: An example of the newly discovered giant Zhugongtang deposit, South China. J. Asian Earth Sci. 2021, 220, 104–114. [Google Scholar]
- Anderson, G. Kerogen as a source of sulfur in MVT deposits. Econ. Geol. 2015, 110, 837–840. [Google Scholar] [CrossRef]
- Saintilan, N.J.; Spangenberg, J.E.; Chiaradia, M. Petroleum as source and carrier of metals in epigenetic sediment hosted mineralization. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yin, L. Mineralogical characteristics and genetic significance of Nanmushu Lead-zinc deposit in Mayuan area, Shaanxi Province, China. Eng. Sci. Tech. Ser. 2019, 4, 12–13. [Google Scholar]
- Li, X.J.; Hou, M.T.; Zhu, Z.W. Prospecting model and prospect prediction of Guanyin lead-zinc deposit in the northern margin of Yangtze block. Shaanxi Geol. 2011, 29, 2–3. [Google Scholar]
- Liu, S.W.; Liu, L.F.; Gao, Y.B.; Ge, X.H.; Zheng, X.Z.; Zhang, H.D.; Wang, L. Metallogenic material sources of the Mayuan lead-zinc deposit in the northern margin of Yangtze: Geochemical evidence from C, O, H, S, Pb and Sr isotopes. Miner. Depos. 2012, 31, 545–554. [Google Scholar]
- Wang, X.H.; Xue, C.J.; Li, Z.M.; Li, Q.; Yang, R.J. Geological and geochemical characteristics of the Mayuan lead-zinc deposit in the northern margin of Yangtze landmass. Miner. Depos. 2008, 27, 37–48. [Google Scholar]
- Li, H.M.; Chen, Y.C.; Wang, D.H. Li, H.Q. Geochemical characteristics and metallogenic age of Mayuan zinc deposit in Nanzheng area, Shaanxi Province. Geol. Bull. China 2007, 26, 546–552. [Google Scholar]
- Li, R.X.; Dong, S.W.; Zhang, S.N.; Zhu, J.R.; Xia, B. Study on organic fluids during orogenic process in Daba Mountain. J. Nanjing Uni. 2012, 48, 295–307. [Google Scholar]
- Li, R.X.; Qin, X.L.; Dong, S.W.; Shuwen, L. Characteristics of hydrocarbon fluid inclusions and significance for Evolution of Petroleum systems in the Dabashan Foreland, Central China. Acta Geol. Sin. 2015, 89, 861–875. [Google Scholar]
- Boynton, W.V. Cosmochemistry of the Rarc Earth Elements, Ins Hcnderson P cd, Rare Earth Element Geochemistry. Devel. Geochem. 1984, 2, 3–114. [Google Scholar]
- Manning, D.A.C.; Gize, A.P. The role of organic matter in ore transport processes. In Organic Gechemistry: Principles and Application; Engel, M.H., Macko, S.A., Eds.; Plenum Press: New York, NY, USA, 1993; pp. 547–563. [Google Scholar]
- Li, D.L. Geochemical characteristics and paleosedimentary environment of Chang 7 oil shale in Triassic Yanchang Formation, southern Ordos Basin. Basic Science. Eng. Sci. Tech. Ser. 2019, 12, 53–58. [Google Scholar]
- Saintilan, N.J.; Spangenberg, J.E.; Samankassou, E.; Kouzmanov, K.; Chiaradia, M.; Stephens, M.B.; Fontboté, L. A refined genetic model for the Laisvall and Vassbo MVT-type sandstone-hosted deposits, Sweden: Constraints from organic geochemistry. Miner. Depos. 2016, 51, 639–664. [Google Scholar] [CrossRef]
- Eisenlohr, B.N.; Tompkins, L.A.; Cathles, L.M.; Groves, D.I. Mississippi Valley-type deposits: Products of brine expulsion by eustatically induced hydrocarbon generation. Geology 1994, 22, 315–318. [Google Scholar] [CrossRef]
- Pelch, M.A.; Appold, M.S.; Emsbo, P.; Bodnar, R.J. Constraints from fluid inclusion compositions on the origin of Mississippi Valley-type mineralization in the Illinois-Kentucky district. Econ. Geol. 2015, 110, 787–808. [Google Scholar] [CrossRef]
- David, A.B. Transport of metals by hydrocarbons in MVT deposits. Acta Geol. Sin. 2014, 88, 145–146. [Google Scholar]
- Larbi, R.; Nejib, J.; Emmanuel, J.M.C. Organic matter and metal contents within the Cretaceous rocks of the SlataGuern Halfaya area, North-Central Tunisia: Implication for ore genesis. Ore Geol. Rev. 2019, 113, 1–18. [Google Scholar]
- Giordano, T.H. Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum- field brines at 100 °C: The influence of pH and oxygen fugacity. Geochem. Trans. 2002, 3, 56–72. [Google Scholar] [CrossRef] [PubMed]
Sample Number | Sampling Point | Horizon | Sample Name |
---|---|---|---|
A | Fucheng township | Dengying Formation ore-bearing bed | Bitumen |
B | Fucheng township | Dengying Formation ore-bearing bed | Asphaltene dolomite |
C | Mayuan Zn-Pb mining area | Dengying Formation ore-bearing bed | Asphaltene sphalerite |
D | Fucheng township | Guojiaba Formation | Black shale |
E | Fucheng township | Longmaxi Formation | Black shale |
A1 | Fucheng township | Dengying Formation ore-bearing bed | Bitumen a |
B1 | Fucheng township | Dengying Formation ore-bearing bed | Asphaltene dolomite a |
C1 | Mayuan Zn-Pb mining area | Dengying Formation ore-bearing bed | Asphaltene sphalerite a |
D1 | Fucheng township | Guojiaba Formation | Black shale a |
E1 | Fucheng township | Longmaxi Formation | Black shale a |
Elements | A | A1 | B | B1 | C | C1 | D | D1 | E | E1 |
---|---|---|---|---|---|---|---|---|---|---|
Li | 0.90 | 0.82 | 0.70 | 0.65 | 1.42 | 1.36 | 16.10 | 15.91 | 25.87 | 25.55 |
Be | 0.03 | 0.03 | 0.03 | 0.03 | 0.05 | 0.05 | 1.69 | 1.67 | 2.24 | 2.20 |
Sc | 0.84 | 1.36 | 1.24 | 1.58 | 1.64 | 1.94 | 14.32 | 14.01 | 10.14 | 9.97 |
V | 10.2 | 8.46 | 7.80 | 10.23 | 12.08 | 12.77 | 328.4 | 326.8 | 238.9 | 229.8 |
Cr | 8.26 | 7.90 | 3.53 | 4.68 | 3.83 | 4.19 | 86.21 | 86.12 | 53.14 | 52.28 |
Co | 1.30 | 1.31 | 1.92 | 1.89 | 2.15 | 2.22 | 4.95 | 5.01 | 13.04 | 12.89 |
Ni | 8.73 | 8.44 | 11.19 | 10.56 | 10.26 | 10.41 | 70.81 | 71.60 | 92.28 | 90.86 |
Cu | 2.19 | 2.25 | 113.8 | 110.9 | 178.0 | 183.7 | 12.73 | 12.58 | 56.33 | 55.63 |
Zn | 951.9 | 882.5 | 36,727 | 32,665 | 61,201 | 53,940 | 177.1 | 145.2 | 519.6 | 426.1 |
Ga | 0.17 | 0.15 | 3.53 | 3.47 | 5.14 | 5.29 | 17.62 | 17.83 | 14.25 | 13.96 |
Rb | 0.58 | 0.65 | 0.45 | 0.48 | 1.98 | 2.03 | 80.86 | 72.06 | 103.54 | 102.95 |
Sr | 28.01 | 27.86 | 40.62 | 39.89 | 55.05 | 55.67 | 75.59 | 73.39 | 70.53 | 70.52 |
Y | 0.43 | 0.44 | 0.89 | 0.81 | 1.06 | 1.05 | 28.66 | 28.58 | 22.48 | 23.15 |
Zr | 0.52 | 0.36 | 0.32 | 0.33 | 1.58 | 1.59 | 295.4 | 279.7 | 141.8 | 141.2 |
Nb | 0.07 | 0.08 | 0.05 | 0.05 | 0.16 | 0.17 | 12.41 | 12.67 | 16.92 | 16.91 |
Mo | 0.48 | 0.48 | 1.39 | 1.81 | 1.97 | 1.90 | 16.97 | 17.25 | 19.43 | 19.70 |
Cd | 3.36 | 3.45 | 505.9 | 500.9 | 781.2 | 771.8 | 1.58 | 1.49 | 4.70 | 4.16 |
In | 0.00 | 0.00 | 0.12 | 0.11 | 0.22 | 0.22 | 0.04 | 0.04 | 0.06 | 0.07 |
Cs | 0.03 | 0.02 | 0.07 | 0.06 | 0.25 | 0.24 | 3.78 | 3.88 | 6.30 | 6.22 |
Ba | 21.14 | 20.32 | 15.72 | 14.09 | 36.26 | 36.32 | 926.2 | 923.1 | 900.5 | 894.5 |
La | 0.33 | 0.28 | 0.45 | 0.39 | 0.69 | 0.75 | 32.48 | 32.37 | 33.71 | 33.38 |
Ce | 0.62 | 0.57 | 1.04 | 0.93 | 1.53 | 1.66 | 64.92 | 63.94 | 63.11 | 62.83 |
Pr | 0.09 | 0.08 | 0.17 | 0.15 | 0.22 | 0.23 | 7.81 | 7.80 | 7.62 | 7.54 |
Nd | 0.37 | 0.33 | 0.76 | 0.67 | 0.88 | 1.02 | 29.42 | 29.60 | 28.38 | 28.28 |
Sm | 0.07 | 0.07 | 0.16 | 0.16 | 0.21 | 0.21 | 5.49 | 5.48 | 5.60 | 5.47 |
Eu | 0.03 | 0.03 | 0.05 | 0.05 | 0.06 | 0.06 | 1.34 | 1.35 | 1.23 | 1.28 |
Gd | 0.10 | 0.09 | 0.16 | 0.18 | 0.23 | 0.21 | 5.60 | 5.76 | 5.72 | 5.60 |
Tb | 0.01 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.84 | 0.83 | 0.77 | 0.77 |
Dy | 0.07 | 0.04 | 0.15 | 0.12 | 0.17 | 0.16 | 4.97 | 4.96 | 4.02 | 4.15 |
Ho | 0.01 | 0.01 | 0.03 | 0.02 | 0.04 | 0.03 | 1.05 | 1.05 | 0.80 | 0.82 |
Er | 0.03 | 0.03 | 0.07 | 0.06 | 0.10 | 0.10 | 3.28 | 3.26 | 2.42 | 2.40 |
Tm | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.47 | 0.48 | 0.33 | 0.33 |
Yb | 0.03 | 0.02 | 0.04 | 0.04 | 0.09 | 0.06 | 3.15 | 3.16 | 2.24 | 2.19 |
Lu | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.48 | 0.50 | 0.33 | 0.34 |
Hf | 0.01 | 0.01 | 0.01 | 0.01 | 0.04 | 0.05 | 8.20 | 8.69 | 3.98 | 3.96 |
Ta | 0.02 | 0.01 | 0.03 | 0.02 | 0.03 | 0.02 | 0.97 | 0.98 | 1.20 | 1.18 |
Pb | 7.56 | 7.31 | 1213 | 1161 | 1215 | 1150 | 17.99 | 15.81 | 28.21 | 26.15 |
Bi | 0.01 | 0.00 | 0.01 | 0.02 | 0.05 | 0.04 | 0.26 | 0.28 | 0.45 | 0.45 |
Th | 0.05 | 0.04 | 0.06 | 0.04 | 0.18 | 0.17 | 12.23 | 13.36 | 11.16 | 11.30 |
U | 0.56 | 0.56 | 0.74 | 0.75 | 0.60 | 0.61 | 21.79 | 22.33 | 12.44 | 12.63 |
Li | 0.90 | 0.82 | 0.70 | 0.65 | 1.42 | 1.36 | 16.10 | 15.91 | 25.87 | 25.55 |
Elements | Zn | Pb | Cd |
---|---|---|---|
B | 36,727 | 1213 | 505.9 |
B1 | 32,666 | 1161 | 500.9 |
△Ba | 11.1% | 4.3% | 1.0% |
Elements | Zn | Sr | Ba | Cr | Pb | Ni | V |
---|---|---|---|---|---|---|---|
A | 951.9 | 28.01 | 21.14 | 8.26 | 7.56 | 8.73 | 10.2 |
A1 | 882.5 | 27.86 | 20.32 | 7.90 | 7.31 | 8.44 | 8.46 |
△Aa | 7.49% | 0.53% | 3.87% | 4.36% | 3.31% | 3.32% | 1.75% |
Elements | Zn | Pb | Cd |
---|---|---|---|
C | 61,201 | 1215 | 781.2 |
C1 | 53,940 | 1150 | 771.8 |
△Ca | 11.9% | 5.33% | 1.27% |
Elements | Zn | V | Zr | Ba |
---|---|---|---|---|
D | 177.1 | 328.4 | 295.4 | 926.2 |
D1 | 145.2 | 326.8 | 279.7 | 923.1 |
△D | 18.0% | 0.47% | 5.32% | 0.33% |
Element Type | Zn | V | Zr | Ba |
---|---|---|---|---|
E | 519.6 | 238.9 | 141.8 | 900.5 |
E1 | 426.1 | 229.8 | 141.2 | 894.5 |
△E | 18.0% | 3.80% | 0.45% | 0.67% |
Sample Number | A | B | C |
---|---|---|---|
Sample A | 1 40 | 0.999 0.000 40 | 0.999 0.000 40 |
Sample B | 0.999 0.000 40 | 1 40 | 1.000 0.000 40 |
Sample C | 0.999 0.000 40 | 1.000 0.000 40 | 1 40 |
Sample Number | A | B | C | Chondrite Values |
---|---|---|---|---|
La | 0.33 | 0.45 | 0.75 | 0.31 |
Ce | 0.62 | 1.04 | 1.66 | 0.81 |
Pr | 0.09 | 0.17 | 0.23 | 0.12 |
Nd | 0.37 | 0.76 | 1.02 | 0.6 |
Sm | 0.07 | 0.16 | 0.21 | 0.2 |
Eu | 0.03 | 0.05 | 0.06 | 0.07 |
Gd | 0.1 | 0.18 | 0.23 | 0.26 |
Tb | 0.01 | 0.02 | 0.03 | 0.05 |
Dy | 0.07 | 0.15 | 0.17 | 0.32 |
Ho | 0.01 | 0.03 | 0.04 | 0.07 |
Er | 0.03 | 0.07 | 0.10 | 0.21 |
Tm | 0 | 0.01 | 0.01 | 0.03 |
Yb | 0.03 | 0.04 | 0.09 | 0.21 |
Lu | 0 | 0.01 | 0.01 | 0.03 |
∑LREE | 1.51 | 2.63 | 3.93 | 2.11 |
∑HREE | 0.25 | 0.51 | 0.68 | 1.18 |
∑REE | 1.76 | 3.14 | 4.61 | 3.29 |
Sample Number | A | C | D | E |
---|---|---|---|---|
Sample A | 1 40 | 0.999 0.000 40 | 0.142 0.381 40 | 0.474 0.002 40 |
Sample C | 0.999 0.000 40 | 1 40 | 0.119 0.464 40 | 0.453 0.003 40 |
Sample D | 0.142 0.381 40 | 0.119 0.464 40 | 1 40 | 0.924 0.000 40 |
Sample E | 0.474 0.002 40 | 0.453 0.003 40 | 0.924 0.000 40 | 1 40 |
Sample Number | D | E | Chondrite Values |
---|---|---|---|
La | 32.48 | 33.71 | 0.31 |
Ce | 64.92 | 63.11 | 0.81 |
Pr | 7.81 | 7.62 | 0.12 |
Nd | 29.60 | 28.38 | 0.6 |
Sm | 5.49 | 5.60 | 0.2 |
Eu | 1.35 | 1.28 | 0.07 |
Gd | 5.76 | 5.60 | 0.26 |
Tb | 0.84 | 0.77 | 0.05 |
Dy | 4.97 | 4.15 | 0.32 |
Ho | 1.05 | 0.82 | 0.07 |
Er | 3.28 | 2.42 | 0.21 |
Tm | 0.48 | 0.33 | 0.03 |
Yb | 3.16 | 2.24 | 0.21 |
Lu | 0.50 | 0.34 | 0.03 |
∑LREE | 141.7 | 139.7 | 2.11 |
∑HREE | 20.04 | 16.67 | 1.18 |
∑REE | 161.7 | 156.4 | 3.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, G.; Li, S.; Li, R. Mineralization Process of MVT Zn-Pb Deposit Promoted by the Adsorbed Hydrocarbon: A Case Study from Mayuan Deposit on the North Margin of Sichuan Basin. Minerals 2023, 13, 72. https://doi.org/10.3390/min13010072
Guan G, Li S, Li R. Mineralization Process of MVT Zn-Pb Deposit Promoted by the Adsorbed Hydrocarbon: A Case Study from Mayuan Deposit on the North Margin of Sichuan Basin. Minerals. 2023; 13(1):72. https://doi.org/10.3390/min13010072
Chicago/Turabian StyleGuan, Guiyuan, Siwen Li, and Rongxi Li. 2023. "Mineralization Process of MVT Zn-Pb Deposit Promoted by the Adsorbed Hydrocarbon: A Case Study from Mayuan Deposit on the North Margin of Sichuan Basin" Minerals 13, no. 1: 72. https://doi.org/10.3390/min13010072
APA StyleGuan, G., Li, S., & Li, R. (2023). Mineralization Process of MVT Zn-Pb Deposit Promoted by the Adsorbed Hydrocarbon: A Case Study from Mayuan Deposit on the North Margin of Sichuan Basin. Minerals, 13(1), 72. https://doi.org/10.3390/min13010072