The Role of Hydrocarbons in the Genesis of Mississippi-Valley-Type (MVT) Zn–Pb Deposits: Insights from In Situ Sulfur Isotopes of Sphalerite from the Southwestern Margin of the Yangtze Block, SW China
Abstract
:1. Introduction
2. Geological Background
3. Ore Deposit Geology
3.1. Stratigraphy
3.2. Orebodies
3.3. Mineralogy
4. Samples and Analysis Methods
5. Results
6. Discussion
6.1. Source(s) of Sulfur and Sulfate Reduction Mechanisms
- Early period of Stage 2 mineralization
- 2.
- Late period of stage 2 mineralization
6.2. The Role of Hydrocarbons in the Process of Mineralization
7. Conclusions
- An in situ sulfur isotope analysis of sphalerite shows that there are two types of sulfur isotopes in the spheroidal and concentric banded sphalerite as follows: one with relatively invariable δ34S values in the core, and the other with a gradual increase from the core margin (core) to the rim. These two types reflect that they may have formed during different times, with the first type forming in the early period of Stage 2 and the second type forming in the late period of Stage 2.
- According to the sulfur isotopic compositions of the Stage 2 spheroidal and concentric banded sphalerites, in the early period of the main metallogenic stage, the sulfate reduction mechanism is mainly the mixing of reduced sulfur formed by BSR and/or TSR, and DOCs. The late of the main metallogenic stage is dominated by the TSR mechanism, and the gradual increase in the δ34S value may be related to Rayleigh fractionation.
- In the Xuequ–Shandouya deposit, the oil reservoir not only acts as a reducing agent to provide the required hydrogen sulfide for zinc–lead mineralization through the TSR or BSR mechanism, but also directly provides reduced sulfur for mineralization through the thermal decomposition of organic compounds mechanism.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gize, A.P.; Barnes, H.L. The Organic Geochemistry of Two Mississippi Valley-Type Lead-Zinc Deposits. Econ. Geol. 1987, 82, 457–470. [Google Scholar] [CrossRef]
- Tompkins, L.A.; Rayner, M.J.; Groves, D.I.; Roche, M.T. Evaporites: In Situ Sulfur Source for Rhythmically Banded Ore in the Cadjebut Mississippi Valley-Type Zn-Pb Deposit, Western Australia. Econ. Geol. 1994, 89, 467–492. [Google Scholar] [CrossRef]
- Kesler, S.E.; Jones, H.D.; Furman, F.C.; Sassen, R.; Anderson, W.H.; Kyle, J.R. Role of Crude Oil in the Genesis of Mississippi Valley-Type Deposits: Evidence from the Cincinnati Arch. Geology 1994, 22, 609. [Google Scholar] [CrossRef]
- Fallara, F.; Savard, M.M. A Structural, Petrographic, and Geochemical Study of the Jubilee Zn-Pb Deposit, Nova Scotia, Canada, and a New Metallogenic Model. Econ. Geol. 1998, 93, 757–778. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, C.Q.; Mao, J.W.; Ouyang, H.G.; Sun, J. The Genetic Relationship between Hydrocarbon Systems and Mississippi Valley-Type Zn-Pb Deposits along the SW Margin of Sichuan Basin, China. Int. Geol. Rev. 2013, 55, 941–957. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Wu, Y.; Hou, L.; Mao, J.W. Geodynamic Setting of Mineralization of Mississippi Valley-Type Deposits in World-Class Sichuan–Yunnan–Guizhou Zn-Pb Triangle, Southwest China: Implications from Age-Dating Studies in the Past Decade and the Sm–Nd Age of Jinshachang Deposit. J. Asian Earth Sci. 2015, 103, 103–114. [Google Scholar] [CrossRef]
- Wang, G.Z.; Huang, Z.; Zhao, F.F.; Li, N.; Fu, Y.Z. The Relationship between Hydrocarbon Accumulation and Mississippi Valley-type Pb-Zn Mineralization of the Mayuan Metallogenic Belt, the Northern Yangtze Block, SW China: Evidence from Ore Geology and Rb-Sr Isotopic Dating. Resour. Geol. 2020, 70, 188–203. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, G.Z.; Li, N.; Fu, Y.Z.; Lei, Q.; Mao, X.L. Genetic Link between Mississippi Valley-Type (MVT) Zn-Pb Mineralization and Hydrocarbon Accumulation in the Nanmushu, Northern Margin of Sichuan Basin, SW China. Geochemistry 2021, 81, 125805. [Google Scholar] [CrossRef]
- Marikos, M.A.; Laudon, R.C.; Leventhal, J.S. Solid Insoluble Bitumen in the Magmont West Orebody, Southeast Missouri. Econ. Geol. 1986, 81, 1983–1988. [Google Scholar] [CrossRef]
- Macqueen, R.W.; Powell, T.G. Organic Geochemistry of the Pine Point Lead-Zinc Ore Field and Region, Northwest Territories, Canada. Econ. Geol. 1983, 78, 1–25. [Google Scholar] [CrossRef]
- Selby, D.; Creaser, R.A.; Dewing, K.; Fowler, M. Evaluation of Bitumen as a 187Re–187Os Geochronometer for Hydrocarbon Maturation and Migration: A Test Case from the Polaris MVT Deposit, Canada. Earth Planet Sci. Lett. 2005, 235, 1–15. [Google Scholar] [CrossRef]
- Parnell, J. Hydrocarbon Minerals in the Midland Valley of Scotland with Particular Reference to the Oil-Shale Group. Proc. Geol. Assoc. 1984, 95, 275–285. [Google Scholar] [CrossRef]
- Ohomoto, H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Faure, G. Principles of Isotope Geology, 2nd ed.; JohnWiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Seal, R.R. Sulfur Isotope Geochemistry of Sulfide Minerals. Rev. Miner. Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef]
- Basuki, N.I.; Taylor, B.E.; Spooner, E.T.C. Sulfur Isotope Evidence for Thermochemical Reduction of Dissolved Sulfate in Mississippi Valley-Type Zinc-Lead Mineralization, Bongara Area, Northern Peru. Econ. Geol. 2008, 103, 783–799. [Google Scholar] [CrossRef]
- Pfaff, K.; Koenig, A.; Wenzel, T.; Ridley, I.; Hildebrandt, L.H.; Leach, D.L.; Markl, G. Trace and Minor Element Variations and Sulfur Isotopes in Crystalline and Colloform ZnS: Incorporation Mechanisms and Implications for Their Genesis. Chem. Geol. 2011, 286, 118–134. [Google Scholar] [CrossRef]
- Belissont, R.; Boiron, M.-C.; Luais, B.; Cathelineau, M. LA-ICP-MS Analyses of Minor and Trace Elements and Bulk Ge Isotopes in Zoned Ge-Rich Sphalerites from the Noailhac—Saint-Salvy Deposit (France): Insights into Incorporation Mechanisms and Ore Deposition Processes. Geochim. Cosmochim. Acta 2014, 126, 518–540. [Google Scholar] [CrossRef]
- Jørgensen, B.B.; Isaksen, M.F.; Jannasch, H.W. Bacterial Sulfate Reduction above 100 °C in Deep-Sea Hydrothermal Vent Sediments. Science 1992, 258, 1756–1757. [Google Scholar] [CrossRef] [PubMed]
- Ohomoto, H. Biogeochemistry of Sulfur and the Mechanisms of Sulfide-Sulfate Mineralization in Archean Oceans. In Early Organic Evolution; Springer: Berlin/Heidelberg, Germany, 1992; pp. 378–397. [Google Scholar]
- Ohomoto, H.; Rye, R. Isotopes of Sulfur and Carbon. In Geochemistry of Hydrothermal Ore Deposits; John Wiley and Sons, Inc.: New York, NY, USA, 1979; pp. 505–567. [Google Scholar]
- Chaussidon, M.; Lorand, J.-P. Sulphur Isotope Composition of Orogenic Spinel Lherzolite Massifs from Ariege (North-Eastern Pyrenees, France): An Ion Microprobe Study. Geochim. Cosmochim. Acta 1990, 54, 2835–2846. [Google Scholar] [CrossRef]
- Rollinson, H.R. Using Geochemical Data; Routledge: London, UK, 1993; ISBN 9781317898191. [Google Scholar]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The Age Curves of Sulfur and Oxygen Isotopes in Marine Sulfate and Their Mutual Interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Parnell, J. Metal Enrichments in Solid Bitumens: A Review. Miner. Depos. 1988, 23, 191–199. [Google Scholar] [CrossRef]
- Machel, H.G. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings—Old and New Insights. Sediment. Geol. 2001, 140, 143–175. [Google Scholar] [CrossRef]
- Anderson, G.M. Kerogen as a Source of Sulfur in MVT Deposits. Econ. Geol. 2015, 110, 837–840. [Google Scholar] [CrossRef]
- Beales, F.W. Precipitation Mechanisms for Mississippi Valley-Type Ore Deposits. Econ. Geol. 1975, 70, 943–948. [Google Scholar] [CrossRef]
- Powell, T.G.; MacQueen, R.W. Precipitation of Sulfide Ores and Organic Matter: Sulfate Reactions at Pine Point, Canada. Science 1984, 224, 63–66. [Google Scholar] [CrossRef]
- Leach, D.; Sangster, D.; Kelley, K.; Large, R.; Garven, G.; Allen, C.; Gutzmer, J.; Walters, S. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. Econ. Geol. 2005, 100, 561–608. [Google Scholar]
- Liu, H.C.; Lin, W.D. Study on the Pb–Zn–Ag Ore Deposits in Northeast Yunnan, Yunnan, China; Yunnan University Press: Kunming, China, 1999. (In Chinese) [Google Scholar]
- Zhou, J.X.; Luo, K.; Wang, X.C.; Wilde, S.A.; Wu, T.; Huang, Z.-L.; Cui, Y.-L.; Zhao, J.-X. Ore Genesis of the Fule Pb-Zn Deposit and Its Relationship with the Emeishan Large Igneous Province: Evidence from Mineralogy, Bulk C-O-S and in Situ S-Pb Isotopes. Gondwana Res. 2018, 54, 161–179. [Google Scholar] [CrossRef]
- Zhou, J.X.; Xiang, Z.Z.; Zhou, M.F.; Feng, Y.X.; Luo, K.; Huang, Z.-L.; Wu, T. The Giant Upper Yangtze Pb–Zn Province in SW China: Reviews, New Advances and a New Genetic Model. J. Asian Earth Sci. 2018, 154, 280–315. [Google Scholar] [CrossRef]
- Zhou, J.X.; Wang, X.C.; Wilde, S.A.; Luo, K.; Huang, Z.L.; Wu, T.; Jin, Z.G. New Insights into the Metallogeny of MVT Zn-Pb Deposits: A Case Study from the Nayongzhi in South China, Using Field Data, Fluid Compositions, and in Situ S-Pb Isotopes. Am. Mineral. 2018, 103, 91–108. [Google Scholar] [CrossRef]
- Zhou, J.X.; Huang, Z.L.; Zhou, M.F.; Li, X.B.; Jin, Z. Constraints of C–O–S–Pb Isotope Compositions and Rb–Sr Isotopic Age on the Origin of the Tianqiao Carbonate-Hosted Pb–Zn Deposit, SW China. Ore Geol. Rev. 2013, 53, 77–92. [Google Scholar] [CrossRef]
- Zhou, J.X.; Huang, Z.L.; Yan, Z.F. The Origin of the Maozu Carbonate-Hosted Pb–Zn Deposit, Southwest China: Constrained by C–O–S–Pb Isotopic Compositions and Sm–Nd Isotopic Age. J. Asian Earth Sci. 2013, 73, 39–47. [Google Scholar] [CrossRef]
- Luo, K.; Zhou, J.X.; Huang, Z.L.; Wang, X.C.; Wilde, S.A.; Zhou, W.; Tian, L. New Insights into the Origin of Early Cambrian Carbonate-Hosted Pb-Zn Deposits in South China: A Case Study of the Maliping Pb-Zn Deposit. Gondwana Res. 2019, 70, 88–103. [Google Scholar] [CrossRef]
- Wang, G.Z.; Lei, Q.; Huang, Z.; Liu, G.; Fu, Y.; Li, N.; Liu, J. Genetic Relationship between Mississippi Valley-Type Pb–Zn Mineralization and Hydrocarbon Accumulation in the Wusihe Deposits, Southwestern Margin of the Sichuan Basin, China. Minerals 2022, 12, 1447. [Google Scholar] [CrossRef]
- Lin, F.C. Hydrothermal Exhalative Metallogeny of Stratiform Pb–Zn Deposits on Western Margin of the Yangtze Craton. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2005. [Google Scholar]
- Li, T.Z. The Genesis and Metallogenic Model of Lead–Zinc Deposits in the Middle Part of Dadu River Valley. Master’s Thesis, Chengdu University of Technology: Chengdu, China, 2007. [Google Scholar]
- Xiong, S.F.; Gong, Y.J.; Jiang, S.Y.; Zhang, X.J.; Li, Q.; Zeng, G.-P. Ore Genesis of the Wusihe Carbonate-Hosted Zn-Pb Deposit in the Dadu River Valley District, Yangtze Block, SW China: Evidence from Ore Geology, S-Pb Isotopes, and Sphalerite Rb-Sr Dating. Miner. Depos. 2018, 53, 967–979. [Google Scholar] [CrossRef]
- Zhu, C.W.; Liao, S.L.; Wang, W.; Zhang, Y.X.; Yang, T.; Fan, H.; Wen, H. Variations in Zn and S Isotope Chemistry of Sedimentary Sphalerite, Wusihe Zn-Pb Deposit, Sichuan Province, China. Ore Geol. Rev. 2018, 95, 639–648. [Google Scholar] [CrossRef]
- Barton, P.B.; Bethke, P.M. Chalcopyrite Disease in Sphalerite: Pathology and Epidemiology. Am. Mineral. 1987, 72, 451–467. [Google Scholar]
- Fowler, Y.D. Self-Organized Banded Sphalerite and Branching Galena in the Pine Point Ore Deposit, Northwest Territories. Can. Mineral. 1996, 34, 1211–1222. [Google Scholar]
- Luo, K.; Zhou, J.X.; Xu, C.; He, K.J.; Wang, Y.B.; Sun, G.T. The Characteristics of the Extraordinary Germanium Enrichment in the Wusihe Large-Scale Ge–Pb–Zn Deposit, Sichuan Province, China and Its Geological Significance. Acta Petrol. Sin. 2021, 37, 2761–2777, (In Chinese with English Abstract). [Google Scholar]
- Xue, C.J.; Chi, G.X.; Fayek, M. Micro-Textures and in Situ Sulfur Isotopic Analysis of Spheroidal and Zonal Sulfides in the Giant Jinding Zn-Pb Deposit, Yunnan, China: Implications for Biogenic Processes. J. Asian Earth Sci. 2015, 103, 288–304. [Google Scholar] [CrossRef]
- Southam, G. The Geomicrobiology of Ore Deposits. Econ. Geol. 2005, 100, 1067–1084. [Google Scholar] [CrossRef]
- Luo, K.; Zhou, J.X.; Huang, Z.L.; Caulfield, J.; Zhao, J.X.; Feng, Y.X.; Ouyang, H.G. New Insights into the Evolution of Mississippi Valley-Type Hydrothermal System: A Case Study of the Wusihe Pb-Zn Deposit, South China, Using Quartz in-Situ Trace Elements and Sulfides in Situ S-Pb Isotopes. Am. Mineral. 2020, 105, 35–51. [Google Scholar] [CrossRef]
- Wei, C.; Ye, L.; Li, Z.L.; Hu, Y.; Huang, Z.L.; Liu, Y.P.; Wang, H. Metal Sources and Ore Genesis of the Wusihe Pb-Zn Deposit in Sichuan, China: New Evidence from in-Situ S and Pb Isotopes. Acta Petrol. Sin. 2020, 36, 3783–3796. [Google Scholar] [CrossRef]
- Zhou, M.F.; Yan, D.P.; Kennedy, A.K.; Li, Y.Q.; Ding, J. SHRIMP U–Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth Planet Sci. Lett. 2002, 196, 51–67. [Google Scholar] [CrossRef]
- Zhou, M.; Ma, Y.; Yan, D.; Xia, X.; Zhao, J.; Sun, M. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Res. 2006, 144, 19–38. [Google Scholar] [CrossRef]
- Zou, H.; Li, Q.L.; Bagas, L.; Wang, X.C.; Chen, A.Q.; Li, X.H. A Neoproterozoic Low-Δ18O Magmatic Ring around South China: Implications for Configuration and Breakup of Rodinia Supercontinent. Earth Planet Sci. Lett. 2021, 575, 117196. [Google Scholar] [CrossRef]
- Zou, H.; Li, M.; Santosh, M.; Zheng, D.; Cao, H.; Jiang, X.-W.; Chen, H.-F.; Li, Z. Fault-Controlled Carbonate-Hosted Barite-Fluorite Mineral Systems: The Shuanghe Deposit, Yangtze Block, South China. Gondwana Res. 2022, 101, 26–43. [Google Scholar] [CrossRef]
- Wang, L.-J.; Yu, J.-H.; Griffin, W.L.; O’Reilly, S.Y. Early Crustal Evolution in the Western Yangtze Block: Evidence from U–Pb and Lu–Hf Isotopes on Detrital Zircons from Sedimentary Rocks. Precambrian Res. 2012, 222–223, 368–385. [Google Scholar] [CrossRef]
- Wang, Z.C.; Jiang, H.; Wang, T.S.; Lu, W.H.; Gu, Z.D.; Xu, A.N.; Yang, Y.; Xu, Z.H. Paleo-Geomorphology Formed during Tongwan Tectonization in Sichuan Basin and Its Significance for Hydrocarbon Accumulation. Pet. Explor. Dev. 2014, 41, 305–312, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, G.Z.; Liu, S.G.; Li, N.; Wang, D.; Gao, Y. Formation and Preservation Mechanism of High Quality Reservoir in Deep Burial Dolomite in the Dengying Formation on the Northern Margin of the Sichuan Basin. Acta Petrol. Sin. 2014, 30, 667–678, (In Chinese with English Abstract). [Google Scholar]
- Liu, S.; Yang, Y.; Deng, B.; Zhong, Y.; Wen, L.; Sun, W.; Li, Z.; Jansa, L.; Li, J.; Song, J.; et al. Tectonic Evolution of the Sichuan Basin, Southwest China. Earth Sci. Rev. 2021, 213, 103470. [Google Scholar] [CrossRef]
- Zheng, D.Y.; Pang, X.Q.; Luo, B. Geochemical Characteristics, Genetic Types, and source of Natural Gas in the Sinian Dengying Formation, Sichuan Basin, China. J. Pet. Sci. Eng. 2021, 199, 108341. [Google Scholar] [CrossRef]
- Gao, P.; Liu, G.; Lash, G.G.; Li, B.; Yan, D.; Chen, C. Occurrences and Origin of Reservoir Solid Bitumen in Sinian Dengying Formation Dolomites of the Sichuan Basin, SW China. Int. J. Coal Geol. 2018, 200, 135–152. [Google Scholar] [CrossRef]
- Liu, S.; Qin, C.; Jansa, L.; Sun, W.; Wang, G.; Xu, G.; Yuan, H.; Zhang, C.; Zhang, Z.; Deng, B.; et al. Transformation of Oil Pools into Gas Pools as Results of Multiple Tectonic Events in Upper Sinian (Upper Neoproterozoic), Deep Part of Sichuan Basin, China. Energy Explor. Exploit. 2011, 29, 679–698. [Google Scholar] [CrossRef]
- Chen, L.; Chen, K.; Bao, Z.; Liang, P.; Sun, T.; Yuan, H. Preparation of Standards for in Situ Sulfur Isotope Measurement in Sulfides Using Femtosecond Laser Ablation MC-ICP-MS. J. Anal. At. Spectrom. 2017, 32, 107–116. [Google Scholar] [CrossRef]
- Sakai, H. Isotopic Properties of Sulfur Compounds in Hydrothermal Processes. Geochem. J. 1968, 2, 29–49. [Google Scholar] [CrossRef]
- Casadevall, T.; Ohomoto, H. Sunnyside Mine, Eureka Mining District, San Juan County, Colorado; Geochemistry of Gold and Base Metal Ore Deposition in a Volcanic Environment. Econ. Geol. 1977, 72, 1285–1320. [Google Scholar] [CrossRef]
- Xu, C.; Zhong, H.; Hu, R.-Z.; Wen, H.-J.; Zhu, W.-G.; Bai, Z.-J.; Fan, H.-F.; Li, F.-F.; Zhou, T. Sources and Ore-Forming Fluid Pathways of Carbonate-Hosted Pb–Zn Deposits in Southwest China: Implications of Pb–Zn–S–Cd Isotopic Compositions. Miner. Depos. 2020, 55, 491–513. [Google Scholar] [CrossRef]
- Thode, H.G.; Monster, J. Sulfur-Isotope Geochemistry of Petroleum, Evaporites, and Ancient Seas. In pp 367-77 of Fluids in Subsurfaces Environments: A Symposium, Memoir No. 4. American Association of Petroleum Geologists, 1965; McMaster University: Hamilton, ON, Canada, 1967. [Google Scholar]
- Orr, W.L. Changes in Sulfur Content and Isotopic Ratios of Sulfur during Petroleum Maturation--Study of Big Horn Basin Paleozoic Oils. Am. Assoc. Pet. Geol. Bull. 1974, 58, 2295–2318. [Google Scholar] [CrossRef]
- Kiyosu, Y.; Krouse, H.R. The Role of Organic Acid in the Abiogenic Reduction of Sulfate and the Sulfur Isotope Effect. Geochem. J. 1990, 24, 21–27. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Li, L.; Yu, J.; Li, Z. Sulfur Isotope Constraint on the Chipu Zn-Pb Deposit. Geochim. Cosmochim. Acta Suppl. 2008, 72, A1077. [Google Scholar]
- Leach, D. Evaporites and Mississippi Valley-Type Zn-Pb-Ag Deposits: An Evolving Perspective. Acta Geol. Sin.—Engl. Ed. 2014, 88, 174–175. [Google Scholar] [CrossRef]
- Berner, R.A. Sulphate Reduction, Organic Matter Decomposition and Pyrite Formation. Phil. Trans. R. Soc. Lond. A 1985, 315, 25–38. [Google Scholar] [CrossRef]
- Richardson, C.K.; Rye, R.O.; Wasserman, M.D. The Chemical and Thermal Evolution of the Fluids in the Cave-in-Rock Fluorspar District, Illinois; Stable Isotope Systematics at the Deardorff Mine. Econ. Geol. 1988, 83, 765–783. [Google Scholar] [CrossRef]
- Behar, F.; Vandenbroucke, M.; Teermann, S.C.; Hatcher, P.G.; Leblond, C.; Lerat, O. Experimental Simulation of Gas Generation from Coals and a Marine Kerogen. Chem. Geol. 1995, 126, 247–260. [Google Scholar] [CrossRef]
- Machel, H.G.; Krouse, H.R.; Sassen, R. Products and Distinguishing Criteria of Bacterial and Thermochemical Sulfate Reduction. Appl. Geochem. 1995, 10, 373–389. [Google Scholar] [CrossRef]
- Shen, Y.; Buick, R. The Antiquity of Microbial Sulfate Reduction. Earth Sci. Rev. 2004, 64, 243–272. [Google Scholar] [CrossRef]
- Walker, R.N.; Gulson, B.; Smith, J. The Coxco Deposit; a Proterozoic Mississippi Valley-Type Deposit in the McArthur River District, Northern Territory, Australia. Econ. Geol. 1983, 78, 214–249. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, J.; Zhang, J.; Chen, X.; Fan, H.; Zhang, Y.; Yang, T.; Wen, H. Isotope Geochemistry of Zn, Pb and S in the Ediacaran Strata Hosted Zn-Pb Deposits in Southwest China. Ore Geol. Rev. 2020, 117, 103274. [Google Scholar] [CrossRef]
- Saintilan, N.J.; Spangenberg, J.E.; Samankassou, E.; Kouzmanov, K.; Chiaradia, M.; Stephens, M.B.; Fontboté, L. A Refined Genetic Model for the Laisvall and Vassbo Mississippi Valley-Type Sandstone-Hosted Deposits, Sweden: Constraints from Paragenetic Studies, Organic Geochemistry, and S, C, N, and Sr Isotope Data. Miner. Depos. 2016, 51, 639–664. [Google Scholar] [CrossRef]
- Liu, S.G.; Ma, Y.S.; Wang, G.Z. The Accumulation Process and Mechanism of Lower Combined Natural Gas in Sichuan Basin; Science Press: Beijing, China, 2014. [Google Scholar]
- Scholle, P.A.; Ulmer-Scholle, D.S. A Color Guide to the Petrography of Carbonate Rocks; American Association of Petroleum Geologists: Tulsa, OK, USA, 2003; ISBN 0891813586. [Google Scholar]
Sample | Location | Texture | Structure (Stage) | Mineral | Colour | Analysis Spot | δ34S (‰) |
---|---|---|---|---|---|---|---|
XQ1-20Q | Xuequ | Coarse-grained; spheroidal and banded sphalerite | Spotted (2) | Sp | Yellowish brown | XQ1-20Q-1a | 16.18 |
Sp | Yellowish brown | XQ1-20Q-1 | 15.96 | ||||
Sp | Reddish brown | XQ1-20Q-2 | 13.82 | ||||
Sp | Yellowish brown | XQ1-20Q-3 | 14.48 | ||||
Sp | Reddish brown | XQ1-20Q-4 | 14.94 | ||||
Sp | Yellowish brown | XQ1-20Q-5 | 14.67 | ||||
Sp | Yellowish brown | XQ1-20Q-6 | 14.44 | ||||
Sp | Yellowish brown | XQ1-20Q-7 | 14.26 | ||||
Sp | Yellowish brown | XQ1-20Q-8 | 10.20 | ||||
Sp | Yellowish brown | XQ1-20Q-9 | 2.49 | ||||
Sp | Yellowish brown | XQ1-20Q-10 | 2.24 | ||||
Sp | Yellowish brown | XQ1-20Q-11 | 0.65 | ||||
Sp | Yellowish brown | XQ1-20Q-12 | 1.01 | ||||
Sp | Yellowish brown | XQ1-20Q-13 | 0.39 | ||||
Sp | Reddish brown | XQ1-20Q-14 | 8.42 | ||||
Sp | Reddish brown | XQ1-20Q-15 | 9.26 | ||||
Sp | Yellowish brown | XQ1-20Q-16 | 9.30 | ||||
Sp | Yellowish brown | XQ1-20Q-17 | 8.83 | ||||
Sp | Yellowish brown | XQ1-20Q-18 | 8.31 | ||||
SDY3-10-1Q | Shandouya | Medium-grained; spheroidal and banded sphalerite | Spotted (2) | Sp | Yellowish brown | SDY3-10-1Q-1 | 13.97 |
Sp | Reddish brown | SDY3-10-1Q-2 | 15.72 | ||||
Sp | Yellowish brown | SDY3-10-1Q-3 | 13.17 | ||||
Sp | Yellowish brown | SDY3-10-1Q-4 | 13.13 | ||||
Sp | Reddish brown | SDY3-10-1Q-5 | 13.80 | ||||
Sp | Yellowish brown | SDY3-10-1Q-6 | 13.79 | ||||
Sp | Reddish brown | SDY3-10-1Q-7 | 13.67 | ||||
Sp | Yellowish brown | SDY3-10-1Q-8 | 11.80 | ||||
Sp | Reddish brown | SDY3-10-1Q-9 | 12.86 | ||||
Sp | Reddish brown | SDY3-10-1Q-10 | 12.47 | ||||
Sp | Yellowish brown | SDY3-10-1Q-11 | 10.88 | ||||
Sp | Yellowish brown | SDY3-10-1Q-12 | 8.94 | ||||
Sp | Yellowish brown | SDY3-10-1Q-12a | 9.26 | ||||
Sp | Reddish brown | SDY3-10-1Q-13 | 9.59 | ||||
Sp | Reddish brown | SDY3-10-1Q-14 | 8.43 | ||||
Sp | Reddish brown | SDY3-10-1Q-15 | 7.73 | ||||
Sp | Reddish brown | SDY3-10-1Q-16 | 6.63 | ||||
Sp | Yellowish brown | SDY3-10-1Q-17 | 6.49 | ||||
Sp | Yellowish brown | SDY3-10-1Q-18 | 6.76 | ||||
Sp | Yellowish brown | SDY3-10-1Q-19 | 2.43 | ||||
XQ1-20J | Xuequ | Fine-grained; spheroidal and banded sphalerite | Spotted (2) | Sp | Yellowish brown | XQ1-20J-1 | 14.32 |
Sp | Yellowish brown | XQ1-20J-2 | 13.06 | ||||
Sp | Reddish brown | XQ1-20J-3 | 14.55 | ||||
Sp | Yellowish brown | XQ1-20J-4 | 14.71 | ||||
Sp | Yellowish brown | XQ1-20J-5 | 14.94 | ||||
XQ1-11 | Xuequ | Coarse-grained | Disseminated (2) | Py | XQ1-11-3PY | 11.77 | |
Gn | XQ1-11-7GN | 11.31 | |||||
Gn | XQ1-11-8GN | 8.44 | |||||
XQ1-8 | Xuequ | Fine-grained | Disseminated (2) | Gn | XQ1-8-5GN | 8.07 | |
Gn | XQ1-8-6GN | 4.43 | |||||
Gn | XQ1-8-7GN | 6.25 |
Deposit Name | Mineral | Method | δ34Sv-CDT (‰) | Data Source |
---|---|---|---|---|
Heiqu–Xuequ–Shandouya | Sp, Gn, and Py | Bulk sulfide minerals | +7.48 to +15.51‰ | Lin 2005 [39] |
Sp and Gn | Bulk sulfide minerals | +7.1 to +13.1‰ | Xiong et al., 2018 [41] | |
Xuequ–Shandouya | Sp, Gn, and Py | LA-MC-ICPMS | +0.39 to +16.18‰ | This study |
Wusihe | Sp, Gn, and Py | Bulk sulfide minerals | +1.8 to +14.3‰ | Luo et al., 2020 [48] |
Sp | Bulk sulfide minerals | +8.61 to +14.05‰ | Li 2007 [40] | |
Sp | Isotope ratio mass spectrometer | +9.4 to +20.9‰ | Zhu et al., 2018 [42] | |
Sp and Py | NanoSIMS | −4.3 to +26.6‰ | Luo et al., 2020 [48] | |
Baoshuixi | Sp | Bulk sulfide minerals | +13.86 to +14.32‰ | Li 2007 [40] |
Niuxinshan | Gn | Bulk sulfide minerals | +15.43‰ | Li 2007 [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Huang, Z.; Lei, Q.; Xu, W. The Role of Hydrocarbons in the Genesis of Mississippi-Valley-Type (MVT) Zn–Pb Deposits: Insights from In Situ Sulfur Isotopes of Sphalerite from the Southwestern Margin of the Yangtze Block, SW China. Minerals 2024, 14, 1009. https://doi.org/10.3390/min14101009
Wang G, Huang Z, Lei Q, Xu W. The Role of Hydrocarbons in the Genesis of Mississippi-Valley-Type (MVT) Zn–Pb Deposits: Insights from In Situ Sulfur Isotopes of Sphalerite from the Southwestern Margin of the Yangtze Block, SW China. Minerals. 2024; 14(10):1009. https://doi.org/10.3390/min14101009
Chicago/Turabian StyleWang, Guozhi, Zhu Huang, Qing Lei, and Wei Xu. 2024. "The Role of Hydrocarbons in the Genesis of Mississippi-Valley-Type (MVT) Zn–Pb Deposits: Insights from In Situ Sulfur Isotopes of Sphalerite from the Southwestern Margin of the Yangtze Block, SW China" Minerals 14, no. 10: 1009. https://doi.org/10.3390/min14101009
APA StyleWang, G., Huang, Z., Lei, Q., & Xu, W. (2024). The Role of Hydrocarbons in the Genesis of Mississippi-Valley-Type (MVT) Zn–Pb Deposits: Insights from In Situ Sulfur Isotopes of Sphalerite from the Southwestern Margin of the Yangtze Block, SW China. Minerals, 14(10), 1009. https://doi.org/10.3390/min14101009